首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thompson (1990) introduced the adaptive cluster sampling design and developed two unbiased estimators, the modified Horvitz-Thompson (HT) and Hansen-Hurwitz (HH) estimators, for this sampling design and noticed that these estimators are not a function of the minimal sufficient statistics. He applied the Rao-Blackwell theorem to improve them. Despite having smaller variances, these latter estimators have not received attention because a suitable method or algorithm for computing them was not available. In this paper we obtain closed forms of the Rao-Blackwell versions which can easily be computed. We also show that the variance reduction for the HH estimator is greater than that for the HT estimator using Rao-Blackwell versions. When the condition for extra samples is 0$$ " align="middle" border="0"> , one can expect some Rao-Blackwell improvement in the HH estimator but not in the HT estimator. Two examples are given.  相似文献   

2.
Practical problems facing adaptive cluster sampling with order statistics (acsord) are explored using Monte Carlo simulation for three simulated fish populations and two known waterfowl populations. First, properties of an unbiased Hansen-Hurwitz (HH) estimator and a biased alternative Horvitz-Thompson (HT) estimator are evaluated. An increase in the level of population aggregation or the initial sample size increases the efficiencies of the two acsord estimators. For less aggregated fish populations, the efficiencies decrease as the order statistic parameter r (the number of units about which adaptive sampling is carried out) increases; for the highly aggregated fish and waterfowl populations, they increase with r. Acsord is almost always more efficient than simple random sampling for the highly aggregated populations. Positive bias is observed for the HT estimator, with the maximum bias usually occurring at small values of r. Secondly, a stopping rule at the Sth iteration of adaptive sampling beyond the initial sampling unit was applied to the acsord design to limit the otherwise open-ended sampling effort. The stopping rule induces relatively high positive bias to the HH estimator if the level of the population aggregation is high, the stopping level S is small, and r is large. The bias of HT is not very sensitive to the stopping rule and its bias is often reduced by the stopping rule at smaller values of r. For more aggregated populations, the stopping rule often reduces the efficiencies of the estimators compared to the non-stopping-rule scheme, but acsord still remains more efficient than simple random sampling. Despite its bias and lack of theoretical grounding, the HT estimator is usually more efficient than the HH estimator. In the stopping rule case, the HT estimator is preferable, because its bias is less sensitive to the stopping level.  相似文献   

3.
Adaptive cluster sampling (ACS) is an efficient sampling design for estimating parameters of rare and clustered populations. It is widely used in ecological research. The modified Hansen-Hurwitz (HH) and Horvitz-Thompson (HT) estimators based on small samples under ACS have often highly skewed distributions. In such situations, confidence intervals based on traditional normal approximation can lead to unsatisfactory results, with poor coverage properties. Christman and Pontius (Biometrics 56:503–510, 2000) showed that bootstrap percentile methods are appropriate for constructing confidence intervals from the HH estimator. But Perez and Pontius (J Stat Comput Simul 76:755–764, 2006) showed that bootstrap confidence intervals from the HT estimator are even worse than the normal approximation confidence intervals. In this article, we consider two pseudo empirical likelihood functions under the ACS design. One leads to the HH estimator and the other leads to a HT type estimator known as the Hájek estimator. Based on these two empirical likelihood functions, we derive confidence intervals for the population mean. Using a simulation study, we show that the confidence intervals obtained from the first EL function perform as good as the bootstrap confidence intervals from the HH estimator but the confidence intervals obtained from the second EL function perform much better than the bootstrap confidence intervals from the HT estimator, in terms of coverage rate.  相似文献   

4.
In this paper, we consider design-based estimation using ranked set sampling (RSS) in finite populations. We first derive the first and second-order inclusion probabilities for an RSS design and present two Horvitz–Thompson type estimators using these inclusion probabilities. We also develop an alternate Hansen–Hurwitz type estimator and investigate its properties. In particular, we show that this alternate estimator always outperforms the usual Hansen–Hurwitz type estimator in the simple random sampling with replacement design with comparable sample size. We also develop formulae for ratio estimator for all three developed estimators. The theoretical results are augmented by numerical and simulation studies as well as a case study using a well known data set. These show that RSS design can yield a substantial improvement in efficiency over the usual simple random sampling design in finite populations.  相似文献   

5.
Adaptive two-stage one-per-stratum sampling   总被引:1,自引:0,他引:1  
We briefly describe adaptive cluster sampling designs in which the initial sample is taken according to a Markov chain one-per-stratum design (Breidt, 1995) and one or more secondary samples are taken within strata if units in the initial sample satisfy a given condition C. An empirical study of the behavior of the estimation procedure is conducted for three small artificial populations for which adaptive sampling is appropriate. The specific sampling strategy used in the empirical study was a single random-start systematic sample with predefined systematic samples within strata when the initially sampled unit in that stratum satisfies C. The bias of the Horvitz-Thompson estimator for this design is usually very small when adaptive sampling is conducted in a population for which it is suited. In addition, we compare the behavior of several alternative estimators of the standard error of the Horvitz-Thompson estimator of the population total. The best estimator of the standard error is population-dependent but it is not unreasonable to use the Horvitz-Thompson estimator of the variance. Unfortunately, the distribution of the estimator is highly skewed hence the usual approach of constructing confidence intervals assuming normality cannot be used here.  相似文献   

6.
Practical considerations often motivate employing variable probability sampling designs when estimating characteristics of forest populations. Three distribution function estimators, the Horvitz-Thompson estimator, a difference estimator, and a ratio estimator, are compared following variable probability sampling in which the inclusion probabilities are proportional to an auxiliary variable, X. Relative performance of the estimators is affected by several factors, including the distribution of the inclusion probabilities, the correlation () between X and the response Y, and the position along the distribution function being estimated. Both the ratio and difference estimators are superior to the Horvitz-Thompson estimator. The difference estimator gains better precision than the ratio estimator toward the upper portion of the distribution function, but the ratio estimator is superior toward the lower end of the distribution function. The point along the distribution function at which the difference estimator becomes more precise than the ratio estimator depends on the sampling design, as well as the coefficient of variation of X and . A simple confidence interval procedure provides close to nominal coverage for intervals constructed from both the difference and ratio estimators, with the exception that coverage may be poor for the lower tail of the distribution function when using the ratio estimator.  相似文献   

7.

For many clustered populations, the prior information on an initial stratification exists but the exact pattern of the population concentration may not be predicted. Under this situation, the stratified adaptive cluster sampling (SACS) may provide more efficient estimates than the other conventional sampling designs for the estimation of rare and clustered population parameters. For practical interest, we propose a generalized ratio estimator with the single auxiliary variable under the SACS design. The expressions of approximate bias and mean squared error (MSE) for the proposed estimator are derived. Numerical studies are carried out to compare the performances of the proposed generalized estimator over the usual mean and combined ratio estimators under the conventional stratified random sampling (StRS) using a real population of redwood trees in California and generating an artificial population by the Poisson cluster process. Simulation results show that the proposed class of estimators may provide more efficient results than the other estimators considered in this article for the estimation of highly clumped population.

  相似文献   

8.
Rank-based sampling designs are powerful alternatives to simple random sampling (SRS) and often provide large improvements in the precision of estimators. In many environmental, ecological, agricultural, industrial and/or medical applications the interest lies in sampling designs that are cheaper than SRS and provide comparable estimates. In this paper, we propose a new variation of ranked set sampling (RSS) for estimating the population mean based on the random selection technique to measure a smaller number of observations than RSS design. We study the properties of the population mean estimator using the proposed design and provide conditions under which the mean estimator performs better than SRS and some existing rank-based sampling designs. Theoretical results are augmented with some numerical studies and a real-life example, where we also study the performance of our proposed design under perfect and imperfect ranking situations.  相似文献   

9.
We compare the performance of a number of estimators of the cumulative distribution function (CDF) for the following scenario: imperfect measurements are taken on an initial sample from afinite population and perfect measurements are obtained on a small calibration subset of the initial sample. The estimators we considered include two naive estimators using perfect and imperfect measurements; the ratio, difference and regression estimators for a two-phasesample; a minimum MSE estimator; Stefanski and Bay's SIMEX estimator (1996); and two proposed estimators. The proposed estimators take the form of a weighted average of perfect and imperfect measurements. They are constructed by minimizing variance among the class of weighted averages subject to an unbiasedness constraint. They differ in the manner of estimating the weight parameters. The first one uses direct sample estimates. The second one tunes the unknown parameters to an underlying normal distribution. We compare the root mean square error (RMSE) of the proposed estimator against other potential competitors through computer simulations. Our simulations show that our second estimator has the smallest RMSE among thenine compared and that the reduction in RMSE is substantial when the calibration sample is small and the error is medium or large.  相似文献   

10.
Ranked set sampling can provide an efficient basis for estimating parameters of environmental variables, particularly when sampling costs are intrinsically high. Various ranked set estimators are considered for the population mean and contrasted in terms of their efficiencies and useful- ness, with special concern for sample design considerations. Specifically, we consider the effects of the form of the underlying random variable, optimisation of efficiency and how to allocate sampling effort for best effect (e.g. one large sample or several smaller ones of the same total size). The various prospects are explored for two important positively skew random variables (lognormal and extreme value) and explicit results are given for these cases. Whilst it turns out that the best approach is to use the largest possible single sample and the optimal ranked set best linear estimator (ranked set BLUE), we find some interesting qualitatively different conclusions for the two skew distributions  相似文献   

11.
Consider a survey of a plant or animal species in which abundance or presence/absence will be recorded. Further assume that the presence of the plant or animal is rare and tends to cluster. A sampling design will be implemented to determine which units to sample within the study region. Adaptive cluster sampling designs Thompson (1990) are sampling designs that are implemented by first selecting a sample of units according to some conventional probability sampling design. Then, whenever a specified criterion is satisfied upon measuring the variable of interest, additional units are adaptively sampled in neighborhoods of those units satisfying the criterion. The success of these adaptive designs depends on the probabilities of finding the rare clustered events, called networks. This research uses combinatorial generating functions to calculate network inclusion probabilities associated with a simple Latin square sample. It will be shown that, in general, adaptive simple Latin square sampling when compared to adaptive simple random sampling will (i) yield higher network inclusion probabilities and (ii) provide Horvitz-Thompson estimators with smaller variability.  相似文献   

12.
Estimating prevalence using composites   总被引:1,自引:0,他引:1  
We are interested in estimating the fraction of a population that possesses a certain trait, such as the presence of a chemical contaminant in a lake. A composite sample drawn from a population has the trait in question whenever one or more of the individual samples making up the composite has the trait. Let the true fraction of the population that is contaminated be p. Classical estimators of p, such as the MLE and the jackknife, have been shown to be biased. In this study, we introduce a new shrinking estimator which can be used when doing composite sampling. The properties of this estimator are investigated and compared with those of the MLE and the jackknife.  相似文献   

13.
14.
A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources.  相似文献   

15.
We introduce a novel method to extract a sample from a finite population where units with desired characteristics are over-represented. The approach is both sequential and adaptive and allows, via suitable compositions of predictive and objective functions, to target specific subsets of the population. We consider the problem of estimation and conjecture the validity of a modified Horvitz–Thompson estimator capable to account for the imbalance induced by the targeting procedure. After discussing how to apply the method to the sampling of geographically distributed units, we investigate its potential via simulations.  相似文献   

16.
The implementation of an adaptive cluster sampling design often becomes logistically challenging because variation in the final sampling effort introduces uncertainty in survey planning. To overcome this drawback, an inexpensive and easy to measure auxiliary variable could be used in a two-phase survey strategy, called adaptive cluster double sampling (Félix-Medina and Thompson in Biometrika 91:877–891, 2004). In this paper, a two-phase sampling strategy is proposed which combines the idea of adaptive cluster double sampling with the principle of post-stratification. In the first-phase an adaptive cluster sample is selected by means of an inexpensive auxiliary variable. Networks from the first phase sampling are then post-stratified according to their size. In the second-phase, the network structure is used to select a subsample of units by means of stratified random sampling. The proposed sampling strategy employs stratification without requiring an a priori delineation of the strata. Indeed, the strata sizes are estimated in the course of the two-phase sampling process. Therefore, it is suitable for situations where stratification is suspected to be efficient but strata cannot be easily delineated in advance. In this framework, a new type of estimator for the population mean which mimics the stratified sampling mean estimator and an estimator of the sampling variance are proposed. The results of a simulation study confirm, as expected, that the use of post-stratification leads to gain in precision for the estimator. The proposed sampling strategy is applied for targeting an epiphytic lichen community Lobarion pulmonariae in a forest area of the Northern Apennines (N-Italy), characterized by several species of conservation concern.  相似文献   

17.
Adaptive two-stage sequential sampling (ATSSS) design was developed to observe more rare units and gain higher efficiency, in the sense of having a smaller variance estimator, than conventional sampling designs with equal effort for rare and spatially cluster populations. For certain rare populations, incorporating auxiliary variables into a sampling design can further improve the observation of rare units and increase efficiency. In this article, we develop regression-type estimators for ATSSS so that auxiliary variables can be incorporated into the ATSSS design when warranted. Simulation studies on two populations show that the regression-type estimators can significantly increase the efficiency of ATSSS and the detection of more rare units as compared to conventional sampling counterparts. Simulation of sampling of desert shrubs in Inner Mongolia (one of the two populations studied) showed that by incorporating a GIS auxiliary variable into ATSSS with the regression estimators resulted in a gain in efficiency over ATSSS without the auxiliary variable. Further, we found that the use of the GIS auxiliary variable in a conventional two-stage design with a regression estimator did not show a gain in efficiency.  相似文献   

18.
The combined mark-recapture and line transect sampling methodology proposed by Alpizar-Jara and Pollock [Journal of Environmental and Ecological Statistics, 3(4), 311–327, 1996; In Marine Mammal Survey and Assessment Methods Symposium. G.W. Garner, S.C. Amstrup, J.L. Laake, B.F.J. Manly, L.L. McDonald, and D.C. Robertson (Eds.), A.A. Balkema, Rotterdam, Netherlands, pp. 99–114, 1999] is used to illustrate the estimation of population size for populations with prominent nesting structures (i.e., bald eagle nests). In the context of a bald eagle population, the number of nests in a list frame corresponds to a pre-marked sample of nests, and an area frame corresponds to a set of transect strips that could be regularly monitored. Unlike previous methods based on dual frame methodology using the screening estimator [Haines and Pollock (Journal of Environmental and Ecological Statistics, 5, 245–256, 1998a; Survey Methodology, 24(1), 79–88, 1998b)], we no longer need to assume that the area frame is complete (i.e., all the nests in the sampled sites do not need to be seen). One may use line transect sampling to estimate the probability of detection in a sampled area. Combining information from list and area frames provides more efficient estimators than those obtained by using data from only one frame. We derive an estimator for detection probability and generalize the screening estimator. A simulation study is carried out to compare the performance of the Chapman modification of the Lincoln–Petersen estimator to the screening estimator. Simulation results show that although the Chapman estimator is generally less precise than the screening estimator, the latter can be severely biased in presence of uncertain detection. The screening estimator outperforms the Chapman estimator in terms of mean squared error when detection probability is near 1 wheareas the Chapman estimator outperforms the screening estimator when detection probability is lower than a certain threshold value depending on particular scenarios.  相似文献   

19.
Shen TJ  He F 《Ecology》2008,89(7):2052-2060
Most richness estimators currently in use are derived from models that consider sampling with replacement or from the assumption of infinite populations. Neither of the assumptions is suitable for sampling sessile organisms such as plants where quadrats are often sampled without replacement and the area of study is always limited. In this paper, we propose an incidence-based parametric richness estimator that considers quadrat sampling without replacement in a fixed area. The estimator is derived from a zero-truncated binomial distribution for the number of quadrats containing a given species (e.g., species i) and a modified beta distribution for the probability of presence-absence of a species in a quadrat. The maximum likelihood estimate of richness is explicitly given and can be easily solved. The variance of the estimate is also obtained. The performance of the estimator is tested against nine other existing incidence-based estimators using two tree data sets where the true numbers of species are known. Results show that the new estimator is insensitive to sample size and outperforms the other methods as judged by the root mean squared errors. The superiority of the new method is particularly noticeable when large quadrat size is used, suggesting that a few large quadrats are preferred over many small ones when sampling diversity.  相似文献   

20.
Recently the two-phase adaptive stratified sampling design proposed by Francis (1984) has been extended by Manly et al. (2002) for situations where several biological populations are sampled simultaneously, and where this is done at several different geographical locations in order to estimate population totals or means. The method uses the results from a first phase sample to decide how best to allocate a second phase sample to locations and strata, in order to maximise a criterion (based on estimated coefficients of variation) that measures the accuracy of estimation for population totals, for all variables at all locations. One potential problem with this method is bias in the estimators of the population totals and means. In this paper bootstrapping is considered as a means of overcoming these biases. It is shown using model populations of Pacific walrus and shellfish, based on real data, that bootstrapping is a useful tool for removing about half of the bias. This is also confirmed from some simulations using artificial data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号