首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《International Dairy Journal》2005,15(6-9):655-662
The mechanism of high-pressure (HP)-induced changes in rennet coagulation properties of milk, particularly the role of whey protein-casein micelle associations, was studied. Treatment at 100 or 250 MPa reduced the rennet coagulation time (RCT) of raw skimmed bovine milk, compared with untreated milk. Treatment at 400 MPa had little effect, but at 600 MPa, RCT increased considerably. HP-induced increases in RCT did not occur in serum protein-free milk or milk treated with the sulphydryl-oxidising agent KIO3, which prevents association of denatured β-lactoglobulin with casein micelles. Treatment at 5 or 10 °C at 250–600 MPa resulted in shorter RCT than treatment at 20 °C. In milk without KIO3, coagulum strength was highest after treatment at 250 or 400 MPa, whereas in milk with KIO3 it was highest after treatment at 400 MPa. These results indicate the significance of HP-induced association of whey proteins with casein micelles for rennet coagulation properties of milk.  相似文献   

2.
The effect of high-pressure (HP) treatment (400 MPa, 600 MPa) on ripening of mature 42-day-old Irish blue-veined cheese was studied. Counts of non-starter lactic acid bacteria, lactococci, yeasts, moulds, enterococci and total aerobic bacteria significantly decreased due to HP, with moulds being most sensitive and 600 MPa the most effective treatment. The levels of pH 4.6-soluble nitrogen and (12%) trichloroacetic acid-soluble nitrogen increased immediately after both HP treatments; however, after 28 days of storage, values were lower in HP-treated cheeses than in the control cheese. Urea-polyacrylamide gel electrophoresis showed increased breakdown of β-casein due to HP treatment at both 400 MPa and 600 MPa. Levels of free fatty acids were lower in HP-treated cheese than in the control, but not significantly so, and no significant changes could be observed in the level of flavour compounds of blue-veined cheese. Overall, HP treatment of blue-veined cheese reduced microbiological activity and decelerated proteolysis, with no statistically significant effects on development of flavour compounds.Industrial relevanceHigh-pressure treatment has been studied for the past 100 years; nevertheless, it was not applied in dairy industry, until recently, for a cheese spread. In this study, HP-induced inactivation of microbes and enzymes, which could arrest the ripening of high-quality mature (i.e., ripened) Irish farmhouse blue-veined cheese and thus extend shelf-life at optimal quality, was examined.  相似文献   

3.
Ovine brined cheese was high-pressure (HP) treated at 200 or 500 MPa for 15 min at 20 °C on the 15th day of ripening. Compared to control cheese, HP treatment did not affect significantly (P > 0.05) the pH values, moisture, fat in dry matter, protein in dry matter and salt in moisture contents of cheeses at 90 days. The counts of total aerobic mesophilic bacteria, thermophilic lactococci, thermophilic lactobacilli and non starter lactic acid bacteria (NSLAB) were not affected by HP treatment of cheese at 200 MPa throughout ripening. After 90 days of ripening, the same microbial groups in cheese treated at 500 MPa were about 1.2, 3.6, 2.1 and 4 log units lower than in control cheese respectively. Coliforms were reduced faster at non detectable levels in HP treated cheeses than in control cheese. Regarding the bacterial enzymatic activities in cheese, aminopeptidase activity (Apep) was marginally favoured by both HP treatments. However, its activity was decreased at 90 days due probably to loss in brine. In contrast, lactate dehydrogenase (LDH) activity, following the bacteria cell lysis, was negatively affected by HP treatment at 500 MPa throughout ripening.Industrial relevanceThe data obtained from this work suggest that application of HP treatment under optimized conditions on ovine cheese in brine can be used to reduce effectively the undesirable microbial load in it and to cause moderate enhancement of aminopeptidase activity, without modifying its composition.  相似文献   

4.
Milk subjected to instant infusion pasteurization (IIP) at 72 °C, 100 °C and 120 °C (holding time 0.2 s) exhibited increased rennet coagulation time and decreased curd firming rate for increasing heat treatment temperature, when compared with raw or high temperature short time pasteurized (HTST) milk. However, addition of 4.5 mm or 9.0 mm of calcium restored the impaired rennet coagulation ability. Open texture cheeses produced from IIP milk (100 °C and 120 °C) contained significantly more moisture, had lower pH and shorter texture than similar cheese from IIP at 72 °C and HTST pasteurized milk. Cheese ripening was also affected by heat treatment, and different patterns of casein breakdown and peptide formation resulted from cheeses made from milk treated to IIP at 100 °C and 120 °C compared with cheeses made using IIP at 72 °C or HTST.  相似文献   

5.
Pasteurized (65°C, 30 min), pressurized (400 MPa, 22°C, 15 min) and pasteurized–pressurized milks were used for reduced-fat (approximately 32% of total solids) cheese production. Pressurization of milk increased the yield of reduced-fat cheese through an enhanced β-lactoglobulin and moisture retention. In addition, pressurisation of pasteurized skim milk improved its coagulation properties. The cheeses made from pasteurized–pressurized and pressurized milks showed a faster rate of protein breakdown than the cheese made from pasteurized milk, that might be mainly attributed to a higher level of residual rennet. Hardness of the experimental cheeses, as determined by both the sensory panel and instrumental analyses, decreased as the moisture content and proteolytic degradation of the cheese increased (pasteurized>pressurized>pasteurized–pressurized). In general terms, pressurization of reduced-fat milk prior to cheese-making improved cheese texture and thus accounted for a higher overall acceptability, except for the cheeses made from pasteurized–pressurized milk at 60 d of ripening, whose acceptability score was adversely affected by bitterness.  相似文献   

6.
Freshly prepared rennet-coagulated soft cheese was high-pressure (HP) treated at up to 291 MPa and 29 min and using a full 2-factor central composite design of experiment, its physico-chemical properties (colour, fat, lipid oxidation, moisture and protein content, pH, and texture) were examined. HP treatment influenced significantly (p < 0.05) the colour, fat, moisture, lipid oxidation, hardness and adhesiveness of the fresh cheese. Fat content increased apparently as moisture decreased significantly after HP treatment of above 100 MPa. Increased pressures reduced lipid oxidation but increased yellowness although the latter showed more effect over redness in the HP-treated fresh cheese. Also, increased pressures increased hardness, decreased acidity and adhesiveness in HP-treated fresh cheese although increased exposure was found to increase acidity.Industrial relevanceHigh isostatic pressure for processing fresh cheese is yet to be adopted on an industrial scale. There is a need for research to provide evidence that improved properties of fresh cheese can be realized. The effects of HPP on rennet-coagulated soft Scottish cheese are investigated and the data from this study have provided points where optimized characteristic properties of HPP fresh cheese can be attained, which can serve as a lead for HPP users on fresh cheese.  相似文献   

7.
《International Dairy Journal》2005,15(6-9):893-900
The combined effect of high-pressure (HP) treatment and bacteriocin-producing lactic acid bacteria (BP-LAB) on the survival of Listeria monocytogenes Scott A in cheeses made from raw milk that was inoculated with the pathogen at 4.80 log cfu mL−1, a commercial starter and one of seven strains of BP-LAB was investigated. On day 3, the counts of L. monocytogenes were 7.03 log cfu g−1 in a control cheese (without BP-LAB, not HP treated), 6.06–6.74 log cfu g−1 in cheeses with BP-LAB, 6.13 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 300 MPa, 2.01 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 500 MPa, 3.83–5.43 log cfu g−1 in cheeses with BP-LAB and treated on day 2 at 300 MPa, and 1.81 log cfu g−1 or less in cheeses with BP-LAB and treated on day 2 at 500 MPa. HP treatment was more effective on day 51 than on day 2.  相似文献   

8.
Physical properties of stirred yoghurt made from reconstituted skim milk that was high-pressure (HP)-treated at 100, 250 or 400 MPa, at 25, 70 or 90 °C, for 10 min, prior to inoculation with yoghurt cultures, were studied; portions of milk HP-treated at 25 °C were also heat-treated at 90 °C for 10 min before or after pressure treatment. Control yoghurts were made from skim milk given a heat treatment at 90 °C for 10 min. Fermentation time was not affected by treatment applied to the milk. HP treatment of skim milk at 25 °C, before or after heat treatment, gave stirred yoghurts of similar viscosities to that made from conventionally heat-treated milk. Lower viscosities were obtained when stirred yoghurts were made with milk HP-treated at elevated temperatures. A model is proposed to correlate properties of yoghurt with HP/heat-induced changes in interactions and structures of protein in the milk samples.Industrial relevanceTo meet end user expectations, the dairy industry needs to diversify its product range by tailoring specific functionalities. To meet these expectations, new processing methods such as high-pressure processing are of interest for their potential to achieve specific and/or novel functionalities and/or improve efficiencies, including reduced chemical and water use. In this paper, an investigation of the use simultaneous pressurization and heating of milk before the manufacture of stirred yoghurt is presented.  相似文献   

9.
La Serena cheeses, made from Merino ewes’ raw milk, were high-pressure (HP)-treated at 300 or 400 MPa for 10 min at 10 °C, on days 2 or 50 of ripening. Cheeses treated by HP on day 2 showed higher pH values than control cheese on day 3, but cheeses treated by HP on days 2 or 50 and control cheese had similar pH values on day 60. Breakdown of caseins was delayed by HP treatment of cheeses on day 2. Cheeses treated by HP on day 2 showed higher levels of hydrophilic peptides, lower levels of hydrophobic peptides, lower hydrophobic peptides: hydrophilic peptides ratios, and higher total contents of free amino acids than those of control cheese. HP treatment of cheese on day 50 scarcely affected proteolysis of 60-day-old cheeses. Fracturability, hardness and elasticity values of cheeses treated by HP on day 2 were higher than those of control cheese and of cheeses treated on day 50. Cheeses treated at 400 MPa on day 2 received the lowest scores for quality of taste from panellists, whereas the rest of HP-treated cheeses did not differ from control cheese.  相似文献   

10.
In this study, effects of high pressure (HP) on some constituents and properties of buffalo milk were examined. HP treatment at 100-600MPa for 30 min affected casein micelle size only slightly, whereas treatment at 800 MPa increased it by approximately 35%. Levels of non-micellar alpha(S1)and beta-caseins were increased by treatment > or = 250MPa, and were highest after treatment at 400-800MPa. The level of non-micellar calcium increased with increasing pressure up to 600 MPa. The L*-value of the milk decreased gradually with increasing pressure, from approximately 82 for untreated milk to approximately 65 for milk treated at 800 MPa. Milk pH was increased by approximately 0.07 units after treatment at 100-800 MPa, with no significant difference between treatment pressures. Denaturation of alpha-lactalbumin occurred at pressures > or = 400 MPa, and reached >90% after treatment at 800 MPa, whereas beta-lactoglobulin (beta-Ig) was denatured > 100 MPa, reaching approximately 100% after treatment at 400MPa; after treatment > or = 400MPa, all beta-Ig was associated with the casein micelles. The rennet coagulation time of buffalo milk increased with increasing pressure, whereas the strength of the coagulum formed decreased after treatment at 250-800 MPa. Overall, HP treatment affected many constituents and properties of buffalo milk; some of these effects have also been observed in the milk from other species, but the extent of the effects, and the pressure at which they occurred, differed considerably.  相似文献   

11.
The impact of high pressure (HP) processing on corn starch, rice flour and waxy rice flour was investigated as a function of pressure level (400 MPa; 600 MPa), pressure holding time (5 min; 10 min), and temperature (20 °C; 40 °C). Samples were pre-conditioned (final moisture level: 40 g/100 g) before HP treatments. Both the HP treated and the untreated raw materials were evaluated for pasting properties and solvent retention capacity, and investigated by differential scanning calorimetry, X-ray diffractometry and environmental scanning electron microscopy. Different pasting behaviors and solvent retention capacities were evidenced according to the applied pressure. Corn starch presented a slower gelatinization trend when treated at 600 MPa. Corn starch and rice flour treated at 600 MPa showed a higher retention capacity of carbonate and lactic acid solvents, respectively. Differential scanning calorimetry and environmental scanning electron microscopy investigations highlighted that HP affected the starch structure of rice flour and corn starch. Few variations were evidenced in waxy rice flour. These results can assist in advancing the HP processing knowledge, as the possibility to successfully process raw samples in a very high sample-to-water concentration level was evidenced.Industrial relevanceThis work investigates the effect of high pressure as a potential technique to modify the processing characteristics of starchy materials without using high temperature. In this case the starches were processed in the powder form - and not as a slurry as in previously reported studies - showing the flexibility of the HP treatment. The relevance for industrial application is the possibility to change the structure of flour starches, and thus modifying the processability of the mentioned products.  相似文献   

12.
Milk clotting for the production of novel dairy products, alternative or complementary to cheese and yogurt type products can be achieved using plant sulfhydryl proteases. The objective was to apply the protease actinidin, from Actinidia chinensis, as the milk clotting agent, and High pressure (HP) technology to control excessive proteolysis. The effect of the dairy substrate and the process parameters on the coagulation rate and the texture and sensory properties of the end product, were studied. Selected values of design parameters were 25% total solids, 6.49 adjusted pH, 0.35 U activity of the clotting agent actinidin, 40 ºC process temperature and 2 h time. The selected pressure-temperature conditions, 600 MPa at 40 ºC, were applied to stop the potentially detrimental further proteolytic action of the enzyme. Results indicated that use of actinidin for milk clotting and HP to stop the enzyme activity in the final product, leads to a “fresh cheese” type dairy product.Industrial relevance: Alternative clotting methods for novel dairy products, complementary to cheese and yogurt type products, are of interest to the industry. Plant proteases can be a viable approach, provided that excessive proteolysis after structure formation is regulated. High hydrostatic pressure can be used for controlling proteolytic activity in the final products without affecting their texture and sensory characteristics.  相似文献   

13.
High isostatic pressures up to 600 MPa were applied to samples of skim milk before addition of rennet and preparation of cheese curds. Electron microscopy revealed the structure of rennet gels produced from pressure-treated milks. These contained dense networks of fine strands, which were continuous over much bigger distances than in gels produced from untreated milk, where the strands were coarser with large interstitial spaces. Alterations in gel network structure gave rise to differences in rheology with much higher values for the storage moduli in the pressure-treated milk gels. The rate of gel formation and the water retention within the gel matrix were also affected by the processing of the milk. Casein micelles were disrupted by pressure and disruption appeared to be complete at treatments of 400 MPa and above. Whey proteins, particularly beta-lactoglobulin, were progressively denatured as increasing pressure was applied, and the denatured beta-lactoglobulin was incorporated into the rennet gels. Pressure-treated micelles were coagulated rapidly by rennet, but the presence of denatured beta-lactoglobulin interfered with the secondary aggregation phase and reduced the overall rate of coagulation. Syneresis from the curds was significantly reduced following treatment of the milk at 600 MPa, probably owing to the effects of a finer gel network and increased inclusion of whey protein. Levels of syneresis were more similar to control samples when the milk was treated at 400 MPa or less.  相似文献   

14.
Cheese milk was standardized (casein-to-fat ratio of 0.7) by blending 0.64% fat milk and 35% fat cream. Cream was homogenized at 0/0 MPa (CO), 3.5/3.5 MPa (H05), 6.9/3.5 MPa (H10) or 10.4/3.5 MPa (H15). Cream homogenization did not influence rennet-clotting time, but it increased rate of curd firming and increased curd firmness of cheese milk. Moisture and salt in moisture phase of cheese increased with homogenization. Moisture (37%) and salt (1.5%) adjusted yield increased 1.42, 3.44 and 3.85% in H05, H10 and H15, respectively, over CO. Homogenized treatment cheeses melted faster with age. Free oil in 1 week old cheeses was lowest in H10 and highest in H05 and increased in all treatments with age. Cheese hardness was not influenced by homogenization but decreased with age. Cheeses with homogenized cream had improved body and texture and flavor. Cream homogenized at 6.9/3.5 MPa was optimal for enhancing Cheddar cheese yield and functionality.  相似文献   

15.
The effects of high pressure (HP) on plasmin activity, β-lactoglobulin denaturation and proteolysis during subsequent storage of HP treated milk, were studied. Fresh raw milk samples were exposed to a range of pressures from 50 to 800 MPa, for times of 1, 10 or 30 min, at 20°C. Residual plasmin activity and whey protein denaturation were measured immediately post HP-treatment. Indices of proteolysis were measured during post-HP storage. Treatment at pressures >300 MPa resulted in extensive β-lactoglobulin denaturation. Plasmin activity decreased in milk treated at pressures 400 MPa; the loss of activity was not well correlated with β-lactoglobulin denaturation. Compared to raw milk, treatment at 50 MPa had little effect on proteolysis during storage of treated milk measured as increases in pH 4.6-soluble N and liberation of proteose peptones, but at pressures of 300–400 MPa, proteolysis was increased relative to raw milk. After pressurisation >500 MPa, proteolysis during storage of milk was less than that observed in raw milk. Overall, HP influenced proteolysis in milk in a way which is different from that produced by heat, in terms of subsequent susceptibility of casein to proteolysis during storage or incubation. In particular, HP treatment at pressures of 300–500 MPa can increase proteolysis in milk, possibly through changes in micelle structure facilitating increased availability of substrate bonds to plasmin, which has implications for products prepared from milk thus treated.  相似文献   

16.
High-pressure (HP) technology has been applied to extend the shelf life of shrimps by inhibiting enzymes with PPO activity or microorganisms. However, there is very little information on its effect on relevant compounds from a nutritional or functional point of view, such as fatty acids, α-tocopherol, astaxanthin, and hemocyanin, which constitutes the main objective of the present work. Shrimp cephalothoraxes were HP processed at 200, 400, or 600 MPa/18 °C/15 min or three consecutive 5 min cycles. It was found that hemocyanin was partially denatured at pressures up to 400 MPa, resulting in lower PPO activity, and it was totally denatured at 600 MPa, although 20% residual PPO activity remained. Astaxanthin, α-tocopherol, and total antioxidant activity were stable whichever HP treatment was applied, whereas 600 MPa caused a slight reduction of eicosapentaenoic acid (C20:5n3, EPA) and docosahexaenoic acid (C22:6n3, DHA). Despite this reduction, the ω-6/ω-3 fatty acids ratio was very low (1).Industrial relevanceShrimps are high-value fishery products with a very short shelf life under refrigeration, mainly because of microbial growth and development of melanosis. Thermal treatment is effective for extending shelf life, but it affects the nutritional quality of shrimps through degradation of bioactives such as polyunsaturated fatty acids, tocopherols, or astaxanthin, which are mainly located in the cephalothorax. High pressure is a non-thermal processing technology that has been proved to extend shrimp shelf life, but very little information can be found on its effect on the above-mentioned compounds as well as on the melanosis-inducing hemocyanin. Such basic knowledge is very important for industrial application of high-pressure technology to extend the shelf life of shrimps.  相似文献   

17.
The effects of high-pressure homogenisation (HPH) of cows’ milk were investigated for suitability for yogurt manufacture, compared with the processes currently applied in industry. Milk at different inlet temperatures (30 °C or 40 °C) was subjected to HPH treatment at 100, 200 or 300 MPa (one stage) and 130, 230 or 330 MPa (two-stage). HPH-treated milk was compared with milk heat-treated (90 °C for 90 s) and homogenised at 15 MPa, and with milk treated under the same thermal conditions and also fortified with 3% skim milk powder. Milk treated at 300 or 200 MPa showed higher gel strengths on coagulation, higher gel firmness in texture analysis, less syneresis and lower titratable acidity compared with conventionally treated milk fortified with 3% skim milk powder.  相似文献   

18.
The effects of calcium and high pressure (HP) treatment on the thermal properties of soybean proteins were analyzed in soybean protein isolate (SPI), a β-conglycinin-enriched fraction (7SEF), a glycinin-enriched fraction (11SEF), and whey protein concentrate (WPC). For β-conglycinin, the temperature of denaturation (Td) decreased with up to 12.5 mM or 6.2 mM calcium in SPI and 7SEF, respectively. This parameter increased when calcium was more concentrated. The Td of glycinin increased for every assayed calcium concentration. The values of changes in Td (ΔTd) depended on calcium concentration and the proportion of β-conglycinin and glycinin in the samples. Activation energy decreased for glycinin in the presence of calcium. HP treatment promoted denaturation of β-conglycinin and glycinin. Calcium protected both proteins in SPI, 7SEF and 11SEF at 200 MPa, and protected glycinin in SPI and 7SEF at 400 and 600 MPa. Nevertheless, calcium increased the degree of denaturation of β-conglycinin in 7SEF at 600 MPa. In the absence of calcium, partially-HP-denatured polypeptides exhibited the same or lower Td than controls, whereas in its presence, they exhibited higher Tds than their respective controls.  相似文献   

19.
《LWT》2005,38(1):7-14
Effects of high-pressure treatment on the modifications of soy protein in soy milk were studied using various analytical techniques. Blue shifts of λmax could be observed in the fluorescence spectra. Spectrofluorimetry revealed that the soy protein exhibited more hydrophobic regions after high-pressure treatment. Electrophoretic analysis showed the change of soy protein clearly and indicated that soy proteins were dissociated by high pressure into subunits, some of which associated to aggregate and became insoluble. High-pressure denaturation occurred at 300 MPa for β-conglycinin (7S) and at 400 MPa for glycinin (11S) in soy milk. High pressure-induced tofu gels could be formed that had gel strength and a cross-linked network microstructure. This provided a new way to process soy milk for making tofu gels.  相似文献   

20.
Whole raw milk was processed using a 15 L h−1 homogeniser with a high-pressure (HP) valve immediately followed by a cooling heat exchanger. The influence of homogenisation pressure (100–300 MPa) and milk inlet temperature Tin (4°C, 14°C or 24°C) on milk temperature T2 at the HP valve outlet, on fat globule size distribution and on the reduction of the endogenous flora were investigated. The Tin values of 4–24°C led to milk temperatures of 14–33°C before the HP valve, mainly because of compression heating. High Tin and/or homogenisation pressure decreased the fat globule size. At 200 MPa, the d4.3 diameter of fat globules decreased from 3.8±0.2 (control milk) to 0.80±0.08 μm, 0.65±0.10 or 0.37±0.07 μm at Tin=4, 14°C or 24°C, respectively. A second homogenisation pass at 200 MPa (Tin=4°C, 14°C or 24°C) further decreased d4.3 diameters to about 0.2 μm and narrowed the size distribution. At all Tin tested, an homogenisation pressure of 300 MPa induced clusters of fat globules, easily dissociated with SDS, and probably formed by sharing protein constituents adsorbed at the fat globule surface. The total endogenous flora of raw milk was reduced by more than 1 log cycle, provided homogenisation pressure was ⩾200 MPa at Tin=24°C (T2∼60°C), 250 MPa at Tin=14°C (T2∼62°C), or 300 MPa at Tin=4°C (T2∼65°C). At all Tin tested, a second pass through the HP valve (200 MPa) doubled the inactivation ratio of the total flora. Microbial patterns of raw milk were also affected; Gram-negative bacteria were less resistant than Gram-positive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号