共查询到20条相似文献,搜索用时 69 毫秒
1.
对于经常受到振动、疲劳、地基沉降、冻融循环等因素影响的高耸结构、桥梁高墩、高层建筑等,结构裂缝等混凝土表面缺陷非常常见并需要长期观测。通过无人机对结构表面拍照并应用图像算法识别裂缝等缺陷特征可以很好的解决人工检测困难的问题。本文以标准裂缝宽度卡作为参照,使用相机从各方位对模拟裂缝进行拍照,模拟实际工程中无人机拍摄的状态。实现对裂缝的长度、宽度、方向等几何参数进行测量,并应用数字图像法对带裂缝混凝土结构图像进行识别,证明无人机拍摄图像分析相较传统人工检测的优越性。 相似文献
2.
采用数字图像边缘检测法进行梁变形检测及破损识别 总被引:1,自引:0,他引:1
采用数字照相机采集简支梁在各种变形状态下的图像,在图像中,用多项式函数拟合梁边缘的灰度变化曲线,由曲线的一阶导数以亚像素精度识别边缘位置,由梁在各种变形状态下的边缘位置获得梁的变形曲线。由曲线的二阶导数计算梁的应变,由应变的变化识别梁的破损。 相似文献
3.
4.
计算机视觉技术用于混凝土结构表面裂缝检测,具有现场检测方便、效率高、客观性强的特点,但图像数据分析是该技术的核心,其中裂缝提取与定量测量较为复杂。为提高裂缝图像处理效率和准确率,将深度学习和数字图像处理技术相结合,提出一种裂缝检测方法。建立基于深度卷积神经网络的裂缝识别模型,在图像上自动定位裂缝并结合图像局域阈值分割方法提取裂缝。在裂缝宽度定量测量方面,采用双边滤波算法和三段线性变换对裂缝图像进行预处理,提高了裂缝边缘识别的精确度。通过改进边缘梯度法,实现裂缝最大宽度的定位和裂缝最大宽度的自动获取。该研究为全自动识别裂缝图像及高精度测量裂缝宽度提供了一种解决方法。 相似文献
5.
提出了一种考虑残差学习的深层卷积神经网络损伤识别方法,并将其应用到框架结构节点损伤识别中。采用试验研究方式对所提方法进行了深入探讨,结果表明该方法可以很好地解决网络深化带来的网络退化或梯度爆炸、弥散导致的收敛困难和识别准确率差等问题,能对结构损伤诊断中的损伤定位这一复杂问题进行有效识别。在对试验框架节点损伤位置识别的对比研究中,考虑残差学习的深层卷积神经网络收敛速度和准确率均高于常规浅层神经网络和深层神经网络,有极高的准确率和稳定性,从而使得对于工程中复杂结构损伤诊断所需要的更深层、更复杂网络的搭建成为可能。此外,为提升网络用训练样本的质量和数量,依据样本划分规律提出了一种新的数据样本扩增方法,该方法在相同条件下可以显著增加用以训练的样本量并能弱化数据截断带来的信息缺失,识别准确率和收敛速度也大幅提高,研究显示了该处理方式的有效性和适用性。 相似文献
6.
为了解决建筑工程中混凝土结构表面裂缝问题,本文以实际工程为背景,针对混凝土结构裂纹的超声无损检测方法,分析了单面平测法在超声波探伤中的优点及其适用范围的问题,对已有理论作了进一步的探讨,提出一种新的斜裂纹识别方法——三角余弦方程法,得出这种新的斜缝平面测量方法精度非常高,可以更准确地测出单条斜缝的倾斜方向和扩展长度,与常规斜缝探测技术相比具有一定优越性的结论,并且可为同类研究提供参考。 相似文献
7.
结构裂缝的分布式光纤监测方法及试验研究 总被引:1,自引:0,他引:1
结构裂缝监测是评估结构安全性的重要依据之一,分布式光纤裂缝监测技术可有效避免点式检测空间不连续造成的漏检现象,且易于实现自动化监测。该文提出了布里渊光频域分析计(BOTDA)结合斜交光纤组的裂缝监测方法,通过几何分析得到了光纤应变和裂缝宽度及开展方向的理论模型,并采用标定试验建立了由光纤测试应变反算裂缝宽度及开展方向的数值方程。同时开展了光纤裂缝传感器标距和预拉力大小对测量精度影响的试验研究,并标定了300 mm标距的光纤裂缝传感器实测应变和裂缝宽度及夹角的定量关系。最后通过裂缝模拟试验对裂缝开展进行了跟踪监测,结果表明斜交光纤组能有效得到光纤与裂缝之间夹角值并实时监测裂缝宽度变化。 相似文献
8.
9.
首先阐述了结构损伤识别与诊断在土木工程结构中的重要性,介绍了国内外损伤识别与诊断方法现状,在此基础上,又介绍了用于土木工程结构的各种损伤识别与诊断方法,最后提出了土木工程结构损伤识别与诊断的发展方向。 相似文献
10.
随着我国土木工程行业由建造向运维逐渐转型,工程结构服役安全保障需求陡增,提质增效的结构智能诊断方法成为研究热点。结构服役性态指标是表征工程结构安全水平的要素,是工程结构诊断养护技术体系以及结构健康监测研究的基础,判断结构服役性态的敏感指标并进一步实现指标的智能识别是工程结构诊断智能化的首要任务。为此,围绕工程结构运维公共建筑、地铁隧道、公路桥梁、公路路面等多个场景中的敏感服役指标的智能识别开展综述研究;梳理关键敏感指标,进一步对指标的智能化识别方法进行归纳总结。结果表明,以深度学习为代表的新一代人工智能技术有效推动了结构服役敏感指标的感知识别研究与应用,其中数字图像方法与深度学习算法在工程结构变形、表面病害智能识别中取得了良好的效果,展现了全面的应用优势。 相似文献
11.
响应面法及神经网络模型在岩土工程监测数据处理中的应用 总被引:1,自引:0,他引:1
非线性回归、时间序列机会色系统分析能较好地处理一般的岩土工程监测数据序列 ,但对监测数据变化较复杂的序列处理效果较差。响应面法处理技术和神经网络模型则能较好地处理这类复杂数据序列 ,为岩土工程监测信息的客观处理提供了新的研究方法。 相似文献
12.
13.
《Structure and Infrastructure Engineering》2013,9(6):455-486
Automatic health monitoring and maintenance of civil infrastructure systems is a challenging area of research. Nondestructive evaluation techniques, such as digital image processing, are innovative approaches for structural health monitoring. Current structure inspection standards require an inspector to travel to the structure site and visually assess the structure conditions. A less time consuming and inexpensive alternative to current monitoring methods is to use a robotic system that could inspect structures more frequently. Among several possible techniques is the use of optical instrumentation (e.g. digital cameras) that relies on image processing. The feasibility of using image processing techniques to detect deterioration in structures has been acknowledged by leading experts in the field. A survey and evaluation of relevant studies that appear promising and practical for this purpose is presented in this study. Several image processing techniques, including enhancement, noise removal, registration, edge detection, line detection, morphological functions, colour analysis, texture detection, wavelet transform, segmentation, clustering and pattern recognition, are key pieces that could be merged to solve this problem. Missing or deformed structural members, cracks and corrosion are main deterioration measures that are found in structures, and they are the main examples of structural deterioration considered here. This paper provides a survey and an evaluation of some of the promising vision-based approaches for automatic detection of missing (deformed) structural members, cracks and corrosion in civil infrastructure systems. Several examples (based on laboratory studies by the authors) are presented in the paper to illustrate the utility, as well as the limitations, of the leading approaches. 相似文献
14.
Pierclaudio SAVINO Francesco TONDOLO 《Frontiers of Structural and Civil Engineering》2021,15(2):305-317
Today, the most commonly used civil infrastructure inspection method is based on a visual assessment conducted by certified inspectors following prescribed protocols. However, the increase in aggressive environmental and load conditions, coupled with the achievement of many structures of the life-cycle end, has highlighted the need to automate damage identification and satisfy the number of structures that need to be inspected. To overcome this challenge, this paper presents a method for automating concrete damage classification using a deep convolutional neural network. The convolutional neural network was designed after an experimental investigation of a wide number of pretrained networks, applying the transfer-learning technique. Training and validation were conducted using a database built with 1352 images balanced between “undamaged”, “cracked”, and “delaminated” concrete surfaces. To increase the network robustness compared to images in real-world situations, different image configurations have been collected from the Internet and on-field bridge inspections. The GoogLeNet model, with the highest validation accuracy of approximately 94%, was selected as the most suitable network for concrete damage classification. The results confirm that the proposed model can correctly classify images from real concrete surfaces of bridges, tunnels, and pavement, resulting in an effective alternative to the current visual inspection techniques. 相似文献
15.
考虑土体强度空间变异性,提出了数字图像化随机场特征深度学习模型并进行边坡稳定可靠度分析。通过Karhunen-Loeve展开法离散边坡土体随机场并将离散结果转化为数字图像,建立起随机场图像与边坡功能函数值之间隐式关系的卷积神经网络(CNN)代理模型,进而计算随机场数字图像表征后边坡的失效概率。在建立CNN代理模型时,采用拉丁超立方抽样、贝叶斯优化和五折交叉验证以提高精度。最后以单层不排水饱和黏土边坡和双层黏性土边坡为例说明了该方法的有效性。结果表明:在随机场高维表征图像化和边坡小概率失稳情况下,所提CNN深度学习模型能够比较精确地逼近真实边坡稳定性计算结果,进而显著提高考虑随机场模拟的边坡可靠度分析计算效率。 相似文献
16.
Amit SHIULY Debabrata DUTTA Achintya MONDAL 《Frontiers of Structural and Civil Engineering》2022,16(3):347
Compressive strength is the most important metric of concrete quality. Various nondestructive and semi-destructive tests can be used to evaluate the compressive strength of concrete. In the present study, a new image-based machine learning method is used to predict concrete compressive strength, including evaluation of six different models. These include support-vector machine model and various deep convolutional neural network models, namely AlexNet, GoogleNet, VGG19, ResNet, and Inception-ResNet-V2. In the present investigation, cement mortar samples were prepared using each of the cement:sand ratios of 1:3, 1:4, and 1:5, and using the water:cement ratios of 0.35 and 0.55. Cement concrete was prepared using the cement:sand:coarse aggregate ratios of 1:5:10, 1:3:6, 1:2:4, 1:1.5:3 and 1:1:2, using the water:cement ratio of 0.5 for all samples. The samples were cut, and several images of the cut surfaces were captured at various zoom levels using a digital microscope. All samples were then tested destructively for compressive strength. The images and corresponding compressive strength were then used to train machine learning models to allow them to predict compressive strength based upon the image data. The Inception-ResNet-V2 models exhibited the best predictions of compressive strength among the models tested. Overall, the present findings validated the use of machine learning models as an efficient means of estimating cement mortar and concrete compressive strengths based on digital microscopic images, as an alternative nondestructive/semi-destructive test method that could be applied at relatively less expense. 相似文献
17.
在介绍压汞法、X射线衍射法等常规裂隙统计手段的基础上,着重阐述了一种基于MATLAB图形图像处理功能的裂隙统计新技术,分别对该技术的原理、流程、特点等作了具体说明,以期促进该技术在以后的工程实践中能得到更好的应用。 相似文献
18.
通过分析当前应用于变形监测的图像处理技术,基于传统的灰度重心法和圆边缘检测法,提出改进的有标点中心定位法--亚像素圆心检测法。为验证其精度,设计对比试验,从标点尺寸、拍摄距离、光源强弱和标点运动状态4个方面,对比分析改进算法相对于传统算法的优越性,并得到改进算法的理论精度。同时,通过研究标点位移的特点,建立基于亚像素圆心检测法的变形监测技术,并设计试验,从拍摄距离、光源强弱、标点运动状态3个方面分析该技术的理论可行性。试验结果表明:有标点亚像素圆心检测法精度较高,在50 m拍摄距离内精度达1 mm(15 cm直径圆);基于该算法的变形监测技术对标点坐标变化敏感,在40 m拍摄距离内,识别误差控制在1.0 mm范围内,在25 m拍摄距离内,误差严格控制在0.5 mm内,可行性强。依托江西省石城-吉安(石吉)线B8标李家寨高边坡,进行现场试验,监测结果显示,监测误差与理论研究结果相符,表明新型监测技术具有较好的工程适用性。经理论研究与实践证明,该算法监测精度高、可行性强、工程适用性强、成本较低、可实时反馈监测信息。 相似文献
19.
We are developing an artificial intelligence system for structural health monitoring that can detect local damage in a building structure by using the E-Simulator numerical simulation system that is being developed by the Japanese National Research Institute for Earth Science and Disaster Resilience. In this study, we confirmed the applicability of a multiclass classifier using a deep neural network to address the problem of identifying damage patterns in braces installed in a steel frame. Experimental data obtained from shaking table tests were used for training and testing. Cross-validation tests were conducted for several cases with different numbers of sensors, sensor degrees of freedom, and nodes in the hidden layers of the network. The results demonstrated that the accuracy of the damage pattern detection from the constructed classifier exceeded 77% when the appropriate hidden layers were selected and reached 87.9% for the best case. 相似文献