首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 83 毫秒
1.

本文利用较为完备的球体位错理论,结合4.5年的震后位移数据,优化了2011年日本MW9.0地震震源区岩石圈弹性层厚度与地幔黏滞性因子,更新了该强震断层余滑时空演化过程.首先,基于日本列岛215个均匀分布的GPS连续观测站震前2年与震后4.5年的观测数据,提取了2011年日本MW9.0地震引起的震后位移时空变化;接着,依据断层余滑衰减相对较快的特点,利用黏弹性球体位错理论对震后3~4.5年的GPS观测数据进行反复拟合,确定2011年日本MW9.0地震震源区地幔黏滞性系数和岩石圈弹性层厚度的最优解分别为6×1018 Pa·s和30 km;然后,从震后3年内GPS观测数据中剔除地幔黏滞性松弛效应,获取了断层余滑对应的震后位移场;最后,利用基于球体位错理论的反演算法,反演了2011年日本MW9.0地震断层余滑的时空演化过程.结果表明,2011年日本MW9.0地震引起的断层余滑在震后半年内变化显著,震后2年主震区域余滑基本停止,断层的两端存在一定的余滑效应,断层余滑的累计矩震级达到8.59;地震后4年,地幔黏滞性松弛效应对震后位移场的贡献在总体上超过断层余滑的贡献.

  相似文献   

2.
王永哲 《地震学报》2015,37(5):796-805
本文首先对Envisat/ASAR数据进行干涉处理, 获取2011年日本东北MW9.0地震的地表InSAR同震形变场; 然后通过对InSAR同震形变数据重采样方法的深入分析, 选择条纹率法结合干涉图的空间相干性对InSAR同震形变数据进行重采样; 最后基于弹性半空间位错模型, 联合InSAR与GPS形变数据, 采用最小二乘法反演发震断层的滑动分布. 研究结果表明: 考虑相干性的条纹率重采样方法, 更适用于形变场中存在除断层外的有限边界、 且形变场范围较大的InSAR数据重采样处理; 断层滑动主要发生在地表以下50 km范围内, 最大滑动量为49.9 m, 矩张量为4.89×1022 N·m, 所对应的矩震级为MW9.1, 与地震学反演的结果比较吻合.   相似文献   

3.
王丽凤  刘杰  赵金贵  赵静 《地震》2013,33(4):238-247
本文基于日本GEONET的GPS观测资料, 对日本2011年9.0级地震的同震和震后形变过程进行了研究。 结果表明, 日本9.0级地震使中国大陆出现了显著的同震位移, 几乎对整个中国大陆都有影响。 位移量在中国东北地区最大, 接近甚至超过该地区的年运动速率。 震后1年观测到的形变基本上可由沿着断层面的蠕滑进行模拟, 粘弹松弛的贡献不大。 根据所得到的震后蠕滑模型, 震后1年形变所释放的能量等同于发生一个8.7级地震, 其影响主要在东部地区, 最大位移约为年运动速率的30%。 预测在未来2年, 该地震的影响范围将逐渐减小。 地震造成的粘弹松弛在未来50~100年的尺度上, 对东北地区有拉张效应。 日本9.0级地震整体上起到了卸载中国大陆在板块间挤压过程中所累积应变能的作用, 因此该地震发生后的几个月, 中国大陆东部的地震活动水平较震前明显降低。  相似文献   

4.
本文利用大范围的震后GPS数据和黏弹性球形地球位错理论,定量研究了日本M_W9.0地震周边地区地幔黏滞性结构的垂向变化.首先结合陆地和海底的GPS观测数据,以及基于球形地球位错理论格林函数和贝叶斯反演方法,反演了该地震的同震滑动分布,发现其最大错动量高达59m.然后在均一地幔黏滞性结构的假设前提下,确定了震源周边地区地幔黏滞因子的最优解,发现依据该地幔黏滞因子获得的理论远场震后位移和GPS观测结果之间的均方根误差高达0.81cm,不能解释远场观测结果.为解决上述问题,本文对震中周边地区地幔黏滞性结构沿垂向方向进行分层,建立了一个随深度变化的地幔黏滞性构造模型,然后综合利用远近场的GPS数据对该地区地幔黏滞因子进行反演研究,结果表明,震源周边地区岩石圈弹性层厚度最优解为40km,40~220km深度的地幔黏滞因子最优解为6×10~(18)Pa·s,220~670km深度之间的地幔黏滞因子最优解为1.5×10~(19)Pa·s.上述地幔黏滞性构造使远场的均方根误差降为0.12cm,仅为利用均一地幔黏滞性构造所得均方根误差值的15%,大大提高了远场模拟结果的准确性.最后,观测值和模拟值之间的均方根误差分析表明,近场震后形变数据主要约束浅层的地幔黏滞性结构,而远场震后形变数据主要约束深部的地幔黏滞性结构.  相似文献   

5.
陈斐  薛梅 《地震学报》2021,43(3):321-337
基于北美沿岸和内陆地震台站的连续地震波形记录,并结合沿岸台站附近布设的DART系统记录的海底压力数据以及预测潮汐数据,利用时频分析和极化分析方法对2011年3月11日日本东北部海域MW9.0大地震所激发的海啸对地震背景噪声所产生的影响予以深入分析.结果显示:海啸对高频噪声(1.3—1.5 Hz)以及短周期双频微地动噪声...  相似文献   

6.
Yabuki & Matsu'ura反演方法是利用ABIC最佳模型参数选取方法和平滑的滑动分布作为约束条件,由形变观测数据计算发震断层滑动分布.本文基于日本列岛同震GPS观测数据和发震断层曲面构造模型,利用Yabuki&Matsu'ura反演方法计算2011年日本东北地区太平洋海域Mw9.0级地震的发震断层同震滑动分布.反演结果表明,断层面上的最大滑动量为35 m,较大滑动分布在浅于30 km的震源中心上部,最大破裂集中在20 km深度的地方,其地震矩约为3.63×1022N·m,对应的矩震级为Mw9.0.模拟结果显示Yabuki&Matsu'ura反演方法更适用于倾角低于40°的断层模型反演.最后,本文基于上述方法获得的发震断层滑动模型,利用地球体位错理论正演计算该地震在中国及其邻区产生的远场形变,正演计算结果基本可以解释由中国GPS陆态网络观测到的同震形变.  相似文献   

7.
Yabuki & Matsu'ura反演方法是利用ABIC最佳模型参数选取方法和平滑的滑动分布作为约束条件,由形变观测数据计算发震断层滑动分布.本文基于日本列岛同震GPS观测数据和发震断层曲面构造模型,利用Yabuki & Matsu'ura反演方法计算2011年日本东北地区太平洋海域Mw9.0级地震的发震断层同震滑动分布.反演结果表明,断层面上的最大滑动量为35 m,较大滑动分布在浅于30 km的震源中心上部,最大破裂集中在20 km深度的地方.其地震矩约为3.63×1022N·m,对应的矩震级为Mw9.0.模拟结果显示Yabuki & Matsu'ura反演方法更适用于倾角低于40°的断层模型反演.最后,本文基于上述方法获得的发震断层滑动模型,利用地球体位错理论正演计算该地震在中国及其邻区产生的远场形变,正演计算结果基本可以解释由中国GPS陆态网络观测到的同震形变.  相似文献   

8.
Yabuki & Matsu'ura反演方法是利用ABIC最佳模型参数选取方法和平滑的滑动分布作为约束条件,由形变观测数据计算发震断层滑动分布.本文基于日本列岛同震GPS观测数据和发震断层曲面构造模型,利用Yabuki & Matsu'ura反演方法计算2011年日本东北地区太平洋海域Mw9.0级地震的发震断层同震滑动分布.反演结果表明,断层面上的最大滑动量为35 m,较大滑动分布在浅于30 km的震源中心上部,最大破裂集中在20 km深度的地方.其地震矩约为3.63×1022N·m,对应的矩震级为Mw9.0.模拟结果显示Yabuki & Matsu'ura反演方法更适用于倾角低于40°的断层模型反演.最后,本文基于上述方法获得的发震断层滑动模型,利用地球体位错理论正演计算该地震在中国及其邻区产生的远场形变,正演计算结果基本可以解释由中国GPS陆态网络观测到的同震形变.  相似文献   

9.
日本东北9.0级地震的同震与震后滑动   总被引:3,自引:0,他引:3  
大部分强震都发生在海沟,那里是海洋板块向大陆板块俯冲的地方.大量矩震级MW9.0以上的地震发生在若干区域,包括智利,阿拉斯加,堪察加半岛和苏门答腊岛等.位于太平洋板块俯冲鄂霍茨克板块的日本海沟,历史记载上没有发生过MW9.0地震,除了至今震级还有争议的公元869年Jogan大地震[1](可能超过MW9.0).然而,根据...  相似文献   

10.
基于GPS观测分析日本9.0级地震同震位错与近场形变特征   总被引:3,自引:2,他引:3  
2011年3月11日日本本州宫城县东海岸近海发生MW9.0级地震,本文在对GPS同震位移场分布及误差特征分析的基础上,反演了同震位错分布.误差分析结果表明震源北西向300 km、北北西向550 km、南西向700 km范围内的同震位移量值明显大于误差,可以为位错反演提供有效的地表位移约束.沿震源北西向GPS剖面结果和位错反演位移剖面结果均表明同震近场位移符合指数衰减特征.位错反演结果表明,日本9.0级地震最大同震位错为25.8 m,位于震中附近;位错量大于10 m的同震破裂集中在震中附近400 km范围内;日本海沟南段同震位错量相对较小,此次地震为日本海沟地区典型逆冲型地震.根据此次9.0级地震和该地区以往强震破裂空间分布特征,此次9.0级地震破裂既体现了强震原地复发的特点,又体现了强震破裂的填空性.  相似文献   

11.

于2011年3月11日发生在日本东北部的MW9.0级逆冲型板间地震是日本有地震记录以来震级最大的一次地震.本研究基于NIED F-net矩张量解目录中的震源机制解,选取两个长轴相互垂直的矩形区域进行应力场2D反演,获取了日本海沟俯冲带地区应力场的空间及时间分布图像.结果表明:主震前,俯冲带地区应力状态在空间上大体趋于一致,即应力轴(P轴、σ1轴及SHmax轴)系统性地倾向板块汇聚方向,P轴、σ1轴倾角整体偏缓(< 30°),且远离震源区及日本海沟东侧区域内的应力轴倾角普遍大于主震震源区内应力轴倾角;主震前,受2003年5月26日在宫城县北部发生的MW7.0地震影响,位于MW9.0地震震源区西北侧的应力场出现明显扰动,σ1轴倾向顺时针偏转150°~180°,并于之后大体恢复至震前状态,同期其他地区没有明显变化,这种情况可能和主震断层局部(深部)的前兆性滑动有关;主震后,距离震源区较远处应力场变化不大,主震震源区内应力场发生显著改变,P轴及σ1轴均以大角度(>60°)倾伏于板块汇聚方向,SHmax轴顺时针偏转60°~90°且在日本海沟附近普遍平行于海沟轴.这项研究以时空图像的方式展示了大地震前应力场变化的特点,反映了大地震孕震过程中构造与地震的相互作用,对于理解大地震孕震过程有重要意义.

  相似文献   

12.
2015年4月25日尼泊尔发生了MW7.8地震, 本文基于震前、 震后两景Sentinel-1A雷达影像, 采用D-InSAR两轨差分干涉法提取了此次地震的同震形变场。 结果显示, 同震形变场位于喜马拉雅造山带—主边界逆冲断裂(MBT)和主前锋逆冲断裂(MFT)附近, 形变场整体表现为自西北向往东南方向延伸近150 km的纺锤形包络状, 以大面积隆起抬升形变为主, 视线向最大隆升形变达1.18 m, 抬升区北侧存在一小沉陷区, 以InSAR观测值定位同震最大形变中心。 基于均匀介质弹性半空间模型(Okada模型)与InSAR观测数据反演了断层滑动分布。 反演结果表明该地震属于典型逆冲型地震, 发震断层为主喜马拉雅逆冲断裂(MHT), 同震破裂从主喜马拉雅逆冲断裂(MHT)向上沿着主前锋逆冲断裂(MFT)传递。 基于InSAR同震形变场局部形变细节, 结合震区地质背景、 断裂分布及断层运动特征, 获得了同震破裂拟出露地表迹线。  相似文献   

13.
基于中国东北和俄罗斯远东东南部2012—2017年的GPS观测数据, 利用包含年周期、 半年周期、 线性项和阶跃项的函数模型拟合GPS站坐标时间序列, 得到ITRF2014下的速度场, 并进一步转换到欧亚参考框架下得到相对欧亚板块的速度场。 基于多尺度球面小波方法解算应变率场, 并分析了其空间分布特征, 同时研究了各GPS站对2011年日本东北MW9.0大地震的震后松弛响应特征和背景形变场特征。 结果表明: ① 若不扣除日本东北大地震的松弛效应, 相对欧亚板块中国东北主体上表现为东南方向运动, 在依兰—伊通断裂和嫩江断裂带之间, 地壳表现为逆时针旋转, 其他区域向东南方向运动, 方向一致性较好, 在敦化—密山断裂东侧速度大小明显增加。 敦化—密山断裂和依兰—伊通断裂两侧拉张量分别为3.96±0.04 mm/a和0.71±0.05 mm/a, 两条断裂的剪切运动不明显。 总体上, 面应变率显示出NW—SE向的拉张和NE—SW向的挤压, 面应变率显示出依兰—伊通断裂南端、 嫩江断裂带北端和俄罗斯远东东南部呈挤压状态。 在依兰—伊通断裂、 敦化—密山断裂南侧以及俄罗斯远东东南部最大剪应变率相对较大。 ② 各GPS测站对2011年日本东北MW9.0大地震震后松弛的响应整体上表现为东南向运动, 松弛形变量随震中距增加而减小。 松弛效应的面应变率总体上表现为NW—SE向的拉张和NE—SW向的挤压, 面应变率显示出依兰—伊通、 敦化—密山断裂南端、 嫩江断裂带北端以及俄罗斯远东地区具有挤压特征, 其他地区表现为拉张特征。 中国与俄罗斯远东边界南端存在一个明显的最大剪应变率高值区。 ③ 扣除日本东北MW9.0大地震引起的松弛变形后, 总体上面应变率仍然表现为NW—SE向的拉张和NE—SW向的挤压, 面应变率最大值仍然位于依兰—伊通断裂和敦化—密山断裂南端、 第二松花江断裂带以及俄罗斯远东和中国边界最南段。 在依兰—伊通断裂、 敦化—密山断裂南端, 中国与俄罗斯远东边界南端的最大剪应变率高值区仍然存在, 表明这些地区应变积累较快, 并且一直在持续。  相似文献   

14.
田平  金红林 《地震》2015,35(2):26-33
地震形变分布特征主要取决于地震断层破裂特征, 不同震级的地震引起的形变响应范围存在差异。 本文中, 我们基于球体位错理论, 以5 mm的形变测量值为基准, 针对逆冲型和走滑型地震断层, 分析了MW6.0~MW8.5地震在跨断层法方向上的形变响应范围, 提出了地震震级和响应范围的经验公式, 并与实际地震(2001年昆仑山口西地震、 2013年芦山地震等)结果进行了比较。 比较结果显示, 经验公式计算结果和实际观测值相符合, 可以用于估算MW6.0~MW8.5地震在跨断层法方向的形变响应范围, 同时为地震远场形变特征分析与同震、 震后形变测量点布设等方面提供参考数据。  相似文献   

15.
2011年3月11日日本发生9.0级地震,本文以此次地震的震间、同震和震后形变观测为约束,依据不同时段断层运动空间分布特征分析日本海沟地区强震与断层运动间关系.震间日本海沟地区,断层运动闭锁线深度约为60km,闭锁线以上从深到浅依次为断层运动强闭锁段、无震滑移段和弱闭锁段.由同震位错反演结果,2011年日本9.0级地震同震存在深浅两个滑移极值区,同震较浅的滑移极值区(同震位错量10~50m,深度小于30km)震间为断层弱闭锁段;同震较深的滑移极值区(同震位错量10~20m,深度在40km左右)震间为断层强闭锁段;而在两者之间的过渡带同震位错相对较小,震间断层运动表现为无震滑移.震后初期断层运动主要分布在在闭锁线以上的同震较深滑移极值区,而同震较浅的滑移极值区能量释放比较彻底,断层震后余滑量相对较小.依据本文同震和震间断层运动反演结果,震间强闭锁段积累10m同震位错需要100多年时间,与该区域历史上7级地震活动复发周期相当;震间弱闭锁段积累30~50m同震位错约需要300~600年时间,与相关研究给出的日本海沟9级左右地震复发周期比较一致.在实际孕震能力判定的工作中,由于不同性质的断层段在同震过程中会表现更多的组合形式,断层发震能力判定结果存在更多的不确定性,但利用区域形变观测等资料给出震间断层运动特征的研究工作对于断层强震发震能力的判定具有非常重要的实际意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号