首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以渐开线花键为研究对象,进行了高速冷滚打成形工件的显微硬度和扫描电镜试验,分析了同一工艺参数下花键不同位置表层硬度随深度的变化趋势,花键的表面硬化程度和微观组织随不同工艺参数的变化规律。试验结果表明:同一工艺参数下,齿顶、分度圆和齿根的表层硬度均随着与齿面距离的增大总体趋于减小,基体硬度为238.5 HV,花键表面形成明显的加工硬化层,齿顶处表面硬度值最小,且硬化层最浅;齿根部分表面硬度略低于分度圆处的表面硬度,硬化层达到1.5 mm;成形花键的表面加工硬化程度,在同一转速下,随着进给量的增大而上升,在同一进给量下,随着转速的增大而下降。  相似文献   

2.
为了实现对20钢花键冷滚打成形表层物理力学性能的合理控制,以冷滚打转速、进给量和滚打轮圆角半径为试验参数,进行了冷滚打成形正交试验,分别测量花键分度圆处的表层加工硬化程度和残余应力,采用田口理论信噪比权衡各加工参数对花键表层物理力学性能的影响程度;运用熵权理论与田口过程能力指数设置各评价指标的权重,建立花键表层物理力学性能的改进田口过程能力指数优化模型,使用广义简约梯度法对模型进行优化,将得到的最优加工工艺参数组合通过冷滚打成形试验进行验证,并对其表层微观组织形貌进行观察和分析。结果表明:进给量对冷滚打花键表层物理力学性能影响程度最大,滚打轮圆角半径次之,冷滚打转速最小;花键表层物理力学性能最优加工参数组合为冷滚打转速1581 r·mm-1,进给量42 mm·min-1,滚打轮圆角半径2 mm;所对应的花键表层物理力学性能最优值为:表层加工硬化程度148. 92%,表层残余应力-85. 83 MPa。  相似文献   

3.
为提高花键冷滚打成形表面性能,研究冷滚打加工参数对表层性能的影响程度,筛选影响冷滚打花键表层性能最优的冷滚打工艺参数,以渐开线花键为研究对象,以冷滚打转速和进给速度为主要工艺参数,将熵权理论与灰色理论相互结合,对花键齿面分度圆处的表面粗糙度、残余应力和硬化程度进行关联分析研究。结果表明:花键表面粗糙度和硬化程度随进给速度的增加而增大,随冷滚打转速的增加而减小;花键残余应力随进给速度的增加而减小,随冷滚打转速的增加而增大;进给速度对冷滚打花键表层性能影响较大;冷滚打花键表层性能最优的冷滚打工艺参数为冷滚打转速1428 r·min~(-1)和进给速度42 mm·min~(-1)。  相似文献   

4.
为提高花键冷滚打成形表面层物理力学性能,筛选了影响冷滚打花键表面层性能最优的冷滚打工艺参数。以渐开线花键为研究对象,以冷滚打转速和进给速度为主要加工工艺参数,以冷滚打花键分度圆处表层加工硬化程度为优化目标,引入熵权理论和满意度函数法进行传统响应曲面函数的改进,构建改进双响应曲面-满意度函数模型。运用广义降阶梯度法对建立的模型进行优化,并对改进双响应曲面-满意度函数法和传统响应曲面法优化结果分别进行冷滚打花键试验验证和花键表层金相组织对比分析。结果表明:改进双响应曲面-满意度函数模型的综合满意度为0.87384,表明所建立模型稳健性合理可靠;优化的加工工艺参数为冷滚打转速1428 r·mm~(-1),进给速度为42 mm·min~(-1),对应的加工硬化程度为148.71%;改进双响应曲面-满意度函数模型的优化参数比传统响应曲面的优化参数所加工的花键表层加工硬化程度高,表明改进双响应曲面-满意度函数模型优化结果较精确。  相似文献   

5.
为了提高轴承表层性能,获得较好的表面硬度,对超声滚挤压加工强化处理后的轴承套圈进行显微硬度测试,研究静压力、工件转速、进给量3个主要加工参数对轴承试样表面层硬度、硬化层深度的影响规律,建立了超声滚挤压轴承套圈表面加工硬化回归模型,并验证了模型的准确性。研究结果表明,轴承套圈表面硬化层深度可达250μm,表面硬度随静压力的增大而增大,随进给量的增大而减小,随转速的增大先增大后减小;其中静压力对硬度和硬化层深度的影响最大,进给量次之,转速影响相对较小;使用所建立的表面硬度模型进行预测的结果与试验结果最大误差为1. 29%,说明该模型可用于不同工艺参数下轴承套圈表面硬度的预测和优化。  相似文献   

6.
为获得最优冷滚打花键表层性能(表面粗糙度、残余应力和表面硬化程度)加工参数组合,以渐开线花键为研究对象,基于冷滚打花键表层性能试验研究,将主观赋权层次分析法和客观赋权熵权法进行线性组合求取组合权重,构建组合权重理想点法,计算各试验次序对应的接近度,从而决策出冷滚打花键表层性能各指标最优加工参数组合。研究结果表明:组合法确定的冷滚打花键表层性能各指标重要程度依次是表面粗糙度残余应力硬化程度;在滚打轮转速为1428~2258 r·min~(-1),工件进给量为21~42 mm·min~(-1)的范围内,冷滚打花键表层性能最优的加工参数组合为滚打轮转速1428 r·min~(-1),工件进给量42 mm·min~(-1)。得到的最优加工参数组合能够提高冷滚打花键表层性能。  相似文献   

7.
为提高冷滚打成形工件的表面质量,改进冷滚打成形工艺,以渐开线花键为研究对象,进行了高速冷滚打成形工件的显微硬度试验,并对实验得到的数据进行了数理统计分析,根据冷滚打加工参数对工件齿廓不同位置表面硬化程度的影响关系,采用曲面响应法建立了成形花键齿廓不同位置表面硬化程度随滚打轮转速和工件进给量变化的多元回归模型,并对模型进行了显著性检验及方差分析,通过试验数据与预测模型的对比分析,证明了该模型在滚打条件相近的情况下,能够对齿廓不用位置的表面硬化程度起到精确的经验预测作用。  相似文献   

8.
为提高冷滚打成形工件的表面性能,实现对冷滚打成形过程中残余应力的控制,以渐开线花键为研究对象,采用轮廓法测量冷滚打成形花键齿廓不同位置的残余应力,依据实验结果采用响应曲面法建立冷滚打成形花键齿廓齿根处、分度圆处和齿顶处的残余压应力峰值和残余压应力层深与冷滚打成形参数的关系模型,对比分析了实验结果与模型的预测结果。研究表明所建立的残余压应力峰值模型的最大预测误差为3.3%,残余压应力层深模型的最大预测误差为6.1%,预测结果具有较高的可信度,可以进行不同冷滚打成形参数的齿廓空间残余应力和残余压应力层深度的预测。  相似文献   

9.
通过显微观察等测试手段,对花键在冷滚打加工时形成的纤维组织、齿形表层硬度分布等进行了研究;分析了冷滚打成形过程中,等轴晶被拉伸形成金属纤维的过程以及齿形表层硬化的原因.试验表明:花键冷滚打加工使工件内部晶粒破碎、细化并拉伸形成了与花键齿形一致的金属纤维组织,冷滚打的冷作硬化使花键齿表层硬度及抗冲击能力有较大提高;高应力在改善花键齿形表面质量的同时,也可能导致高变形抗力,使滚打轮过早失效.  相似文献   

10.
为降低冷滚打花键表面粗糙度,获得冷滚打加工最优参数组合,以滚打轮公转转速和工件进给量两个影响表面粗糙度的主要因素作为变量,设计了冷滚打花键及测量实验方案,采用白光共聚干涉显微镜测量冷滚打花键分度圆处表面粗糙度,依据实验数据通过试凑法建立了冷滚打花键表面粗糙度BP神经网络预测模型,最终确定的神经网络结构为2-6-2-1,对预测值与训练样本值及测试样本值进行了对比分析,结果表明:预测值与训练样本最大误差6.5%,与测试样本最大误差7.9%,预测值与训练样本之间的相关系数为0.996,与测试样本之间的相关系数为0.973,进一步说明了神经网络预测模型的有效性和精确性。  相似文献   

11.
以冷滚打成形齿条为研究对象,沿齿廓线法向对成形齿槽硬度分布进行测量,得到了硬化层沿深度方向的分布规律以及工艺参数对齿槽底部、齿槽圆角、齿壁、齿顶处硬化程度的影响规律;对成形齿槽微观组织进行分析,获得位错密度与硬化程度之间的对应关系。结果表明:齿槽圆角处成形过程中变形量最大,位错积塞现象显著,硬化程度最高,齿壁次之,齿顶处硬化程度最低;齿槽沿深度方向晶粒细化程度逐渐降低,位错密度减小,硬化程度逐渐减弱,齿槽底部受多次滚打叠加作用的影响,硬度在次表层达到最大值。  相似文献   

12.
通过超声滚挤压强化试验,检测了不同工艺参数下残余应力的数据,分析了轴承套圈表层残余应力的变化规律,探究了超声滚挤压工艺参数对轴承套圈表层残余应力的影响,建立了超声滚挤压残余应力的回归模型并验证了其可靠性。研究结果表明,超声滚挤压强化后试样表层残余应力为压应力,残余压应力随进给量和主轴转速的增大而减小,随静压力的增大均呈增大趋势,且随着静压力的增大,残余压应力峰值点由表层向基体方向移动;所建立的超声滚挤压残余应力回归模型的最大相对误差为3. 78%,可以对不同超声滚挤压工艺参数的残余应力进行预测及工艺参数优化。  相似文献   

13.
为获得给定范围的冷滚打花键表面粗糙度加工参数的最优区间,以渐开线花键为研究对象,开展冷滚打花键表面粗糙度试验。构建冷滚打花键表面粗糙度指数函数经验模型,分析冷滚打花键表面粗糙度对加工参数的灵敏度,确定冷滚打花键加工参数的稳定和非稳定域,研究冷滚打花键表面粗糙度试验结果,对确定的稳定与非稳定域进行优选。研究结果表明:表面粗糙度对滚打轮转速的变化最敏感,对工件进给量的变化敏感较弱;滚打轮转速的优选范围为2032~2258 r·min~(-1),工件进给速率的优选范围为21~35 mm·min~(-1)。研究成果为控制冷滚打花键表面粗糙度提供了理论基础和试验依据。  相似文献   

14.
为研究微铣削加工GH4169中加工硬化问题,基于ABAQUS软件建立了三维微铣削模型,分析了每齿进给量和主轴转速的改变对工件微槽顺逆铣侧面加工硬化的影响。研究发现:在实验参数范围内,随着每齿进给量增大,工件逆铣侧和顺铣侧的硬化程度降低;主轴转速增大,则槽两侧面的硬化程度整体上呈现下降趋势;逆铣加工时硬化程度略高于顺铣;微槽两侧面硬化程度沿深度方向逐渐降低。研究结果可为合理选择GH4169微铣削加工参数提供参考,还可为通过有限元分析研究材料加工硬化提供思路。  相似文献   

15.
采用表面超声滚压技术对EA4T车轴表面进行强化处理;利用正交试验法对表面超声滚压工艺参数进行优化。采用粗糙度仪、显微硬度计和残余应力测试仪分别测量车轴表层处的粗糙度、显微硬度和残余应力;并用扫描电镜观察截面的微观组织。结果表明:表面超声滚压可降低EA4T车轴表面粗糙度,获得较高的表面残余压应力,提高车轴表面硬度,并使表层晶粒细化。通过正交试验得出,对粗糙度、表层硬度、硬化层深度和表面残余应力影响最显著的因素分别为进给量、主轴转速、滚压力和主轴转速。本试验条件下选出的最佳工艺参数为主轴转速10 r/min、进给量0.10mm/r、滚压力300 kg。  相似文献   

16.
花键冷滚打和铣削加工的金属组织变形研究   总被引:1,自引:0,他引:1  
本文针对冷滚打花键和铣削花键加工工艺特点,从微观组织分析角度,对两种加工方法得到工件金相组织和硬度分布进行分析比较.试验表明:铣削加工过程中,金属表面组织被切断,内部组织没有发生变化,对力学性能也没有影响;而冷滚打加工后的花键金属组织未被切断,晶粒破碎和细化,位错密度增加,最终被拉成条形纤维组织.相对于铣削,冷滚打加工改善了加工表面金属组织,硬度和强度有较大提高.从而为冷滚打花键成形技术的进一步研究奠定了基础.  相似文献   

17.
难加工材料304不锈钢具有优良的综合性能,广泛应用于核电、海洋工程领域,其加工表面质量一直是研究热点。文章采用单因素切削实验方法研究硬质合金车刀切削304不锈钢的切削参数对显微硬度的影响。利用响应曲面法,分析切削参数对切削力和显微硬度的影响规律;通过仿真分析,研究切削温度与切削参数和距已加工表面深度的关系;通过分析硬化层显微结构,研究滑移线、硬化深度和显微硬度三者的关系,揭示加工硬化的变化原因。分析研究表明,增大切削速度,减小进给量,可减小切削力;切削温度随着切削速度的增加,先增加后减小,随着进给量的增加而增加;显微硬度值越大,滑移线越密集,硬化深度越深。  相似文献   

18.
研究了等离子束表面硬化工艺参数对硼铸铁硬化轨迹交叉点处硬化层的组织与硬度分布的影响。试验结果表明,交叉点处硬化层的组织为隐针马氏体 残留奥氏体 片状石墨 硼化物,其硬化层的深度和硬度均高于单道硬化层的深度和硬度。交叉点处硬化层中的最高硬度并未出现在最表面,而是发生在距表面有一定距离的次表层;且随电流增加,最高硬度的位置向硬化层内部推移。硬化层中硬度分布很不均匀,其最高硬度两侧均具有较大的硬度梯度,但随电流增大,硬度梯度减小。  相似文献   

19.
分析了冷敲花键齿面力学性能的分布情况,并建立相关力学模型。在现有研究基础上,确定花键齿面性能层区域,进而确定本试验的测试点区域。利用纳米压痕测试技术,对测试点进行纳米压痕试验。得到了各测试点的载荷-位移曲线、显微硬度分布曲线、弹性模量分布曲线。通过分析显微硬度与弹性模量比值,研究了冷敲花键性能层抗磨损性能情况。结果显示:在距离花键表层80μm处,从齿顶到齿根,硬度相对芯部依次提高15.83%至36.11%,显微硬度与弹性模量的比值依次由20.50%提高至31.88%;冷敲花键性能层是一种沿花键表层至芯部,以及沿齿顶、齿侧、齿根方向的空间梯度性能层。得到了该性能层加载-位移曲线以及显微硬度力学模型,该力学模型与其结构组织密切相关。  相似文献   

20.
为确定外花键冷滚打的力能参数,分析了冷滚打金属变形区的特点,在一次冷滚打过程中,变形区参数和位置随滚打轮的移动不断变化,接触弧和压下量都很小,在冷滚打初始阶段存在不完整变形区。提出了计算冷滚打单位压力和变形力的解析方法,将一次冷滚打过程离散为无限多个复杂断面的冷滚轧过程,给出了冷滚打单位压力和变形力的解析公式,确定了冷滚打单位压力值及其分布特征。为验证解析方法,建立冷滚打有限元模型并计算了冷滚打成形力,改造卧式铣床进行冷滚打实验,测量了冷滚打成形力。将解析公式预测结果与仿真和实测结果进行对比,结果表明:冷滚打径向力最大值误差分别约为7%和4%,冷滚打径向力变化曲线基本相符,但一次冷滚打过程时间略短。解析方法正确地预测了冷滚打变形力的大小和变化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号