首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
I.IntroductionBinghamfluidisonebranchofnon-Newtonianfluid,suchascrudeparaffinoil,highsediment--ladenwaterflow,highconcentrationmudandthelikewhicharetransportedinpipelinesinmanyindustries,soit'sofgreatsignificancetostudytheflowmechanismsofBinghamfluid.Tsaietal.II]studiedthelinkagebetweenBinghamfluidandpluggedflow.Wangetal.I2]measuredtheturbulencestructureofBinghammud.Mengetal.[3]researchedthekineticenergycorrectionfactorofBinghamfluidinacircularpipe.However,thestudyofBinghamfluidsofarisn't…  相似文献   

2.
3.
This paper presents measurements in the turbulent wake of a circular cylinder rotating with its axis normal to the free-stream velocity; in other words, the axis of rotation was parallel to the streamwise direction. All three mean velocities and six Reynolds stresses were obtained at three positions downstream of the cylinder, with and without rotation of the free-stream. Most emphasis is given to the latter results because of the better flow quality. The ratio of the circumferential velocity of the cylinder to the free-stream velocity — the swirl number — had a maximum value of 0.6. Measurements for two combinations of the free-stream and angular velocities showed the velocity deficit in the wake to be a multi-valued function of the swirl number, implying that the rotation affected the separation of the cylinder's boundary layer in a complex manner. In the turbulent wake, the rotation did not significantly alter the magnitudes of the normal stresses, but caused large changes to the shape of the profiles of the axial and cross-stream normal stresses. Eventually, the primary (cross-stream) shear stress became almost entirely positive, but there was no corresponding change to the (cross-stream) gradient of the streamwise mean velocity. Despite these alterations to the turbulence, the rotationally-activated generation terms in the Reynolds transport equations never dominated the terms that are common to the wakes of rotating and non-rotating cylinders.This work was supported by the Australian Research Council. Most of the data acquisition software was written by Mr J. J. Smith.  相似文献   

4.
5.
6.
Results are presented of an experimental investigation into the influence on flow resistance of flow conditioning prior to the entry region of a circular sectioned tube rotating about an axis parallel to its central axis of symmetry. This investigation is part of a long term study into the effect of rotation on pressure loss and heat transfer characteristics in rotating coolant channels. It is shown that for fully developed flow, rotation has little significant effect on flow resistance in the normal laminar and turbulent zones. The transition region is, however, affected; the usual ‘dip’ in friction factor is replaced by a smoother transition from laminar to turbulent flow. For developing flow, however, it has been shown that rotation can significantly increase the flow resistance above the normal stationary correlations. This increase can be reduced by smoothing the flow with gauzes and flow straightening honeycombs prior to the entry region of the tube.  相似文献   

7.
Summary Velocity-, stress- und pressure distribution has been investigated for the flow of a Newtonian liquid in a circular cylindrical tube with reabsorption across the wall. For constant reabsorption the nonlinear steady flow case has been treated for small cross flow Reynoldsnumbers, while for pulsatile flow the flow behavior is presented for constant and exponentially decaying reabsorption across the wall.
Übersicht Für die pulsierende Strömung einer Newtonschen Flüssigkeit mit Absaugung längs der kreiszylindrischen Wand werden Geschwindigkeits-, Druck- und Spannungsverteilungen bestimmt. Dabei wird sowohl lineares als auch exponentiell abnehmendes Absaugevolumen behandelt. Für konstantes Absaugen längs der Wand wird die nichtlineare Lösung für kleine Querstrom-Reynoldszahlen angegeben.


Awardee of the U. S. Special Program of the Alexander von Humboldt-Stiftung.  相似文献   

8.
A numerical analysis of the flow pattern in the inlet region of a circular pipe rotating steadily about an axis parallel to its own is presented. Both finite cell and finite element methods are used to analyse the problem and they give qualitatively similar results which show that a swirling fluid motion is induced in the pipe inlet region. The analyses show that the direction of swirl is opposite to that of the pipe rotation when viewed along the flow axis and that its magnitude depends on the speed of pipe rotation and throughflow Reynolds number. Neither numerical analysis predicts the marked upturn in friction factor (or pressure drop) which has been observed experimentally. However, a dependence on the pipe inlet boundary conditions is demonstrated.  相似文献   

9.
10.
Rapidly rotating duct flow is studied experimentally with Rotation numbers in the interval [0, 1]. To achieve this, in combination with relatively high Reynolds numbers (5,000-30,000 based on the hydraulic radius), water was used as the working medium. Square and rectangular duct cross-sections were used and the angle between the rotation vector and the main axis of the duct was varied. The influence of the rotation on the pressure drop in the duct was investigated and suitable scalings of this quantity were studied.  相似文献   

11.
Jianjun  Feng  Benzhao  Zhang  Wangyi  Wu 《Acta Mechanica Sinica》1995,11(4):307-317
This paper presents an infinite series solution to the creeping flow equations for the axisymmetric motion of a sphere of arbitrary size rotating in a quiescent fluid around the axis of a circular orifice or a circular disk whose diameters are either larger or smaller than that of the sphere. Numerical tests of the convergence are passed and the comparison with the exact solution and other computational results shows an agreement to five significant figures for the torque coefficients in both cases. The torque coefficients are obtained for the sphere located up to a position tangent to the wall plane containing either the orifice or the disk. It is concluded that the torque coefficients of the sphere and the disk are monotonically increasing with the decrease of the distance from the disk or the orifice plane in both cases.  相似文献   

12.
The results of an experimental investigation of bifurcation phenomena in a laminar flow through a rotating square channel approximately 50 channel widths long are presented. A comparison with known results of the numerical modeling of bifurcations of developed steady-state flow is carried out. A map of the steady and unsteady flow regimes is plotted. The effect of artificially generated input perturbations on the conditions of onset of longitudinally oriented vortex structures in the neighborhood of the elevated-pressure side of channels of lesser length is investigated.St. Petersburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 87–93, March–April, 1996.  相似文献   

13.
14.
In continuation to an earlier publication, experiments have been made in the turbulent flow through a conduit of rectangular cross-section with large aspect ratio. One of the long walls has been made rough, except for a strip, located centrally. As shown in the earlier paper, secondary currents will occur in the regions of transition from smooth to rough wall-condition. The main purpose of the investigation was to check the admissibility of the simplifying assumptions made to the mechanical-energy balance equation. The results of the measurements indeed justified the neglect of unimportant terms of this equation, leading to the following rule. When in a localized region the production is much greater (smaller) than the viscous dissipation, there must be a secondary current that transports turbulence-poor fluid into (outwards) this region and turbulence-rich fluid outwards (into) the region. Dedicated to Dr. Hans Reichardt on the occasion of his 70th birthday on the first of March, 1971.  相似文献   

15.
If a fluid enters an axially rotating pipe, it receives a tangential component of velocity from the moving wall, and the flow pattern change according to the rotational speed. A flow relaminarization is set up by an increase in the rotational speed of the pipe. It will be shown that the tangential- and the axial velocity distribution adopt a quite universal shape in the case of fully developed flow for a fixed value of a new defined rotation parameter. By taking into account the universal character of the velocity profiles, a formula is derived for describing the velocity distribution in an axially rotating pipe. The resulting velocity profiles are compared with measurements of Reich [10] and generally good agreement is found.Nomenclature b constant, equation (34) - D pipe diameter - l mixing length - l 0 mixing length in a non-rotating pipe - N rotation rate,N=Re /Re D - p pressure - R pipe radius - Re D flow-rate Reynolds number, - Re rotational Reynolds number, Re =v w D/ - Re* Reynolds number based on the friction velocity, Re*=v*R/ - (Re*)0 Reynolds number based on the friction velocity in a non-rotating pipe - Ri Richardson number, equation (10) - r coordinate in radial direction - dimensionless coordinate in radial direction, - v r ,v ,v z time mean velocity components - v r ,v ,v z velocity fluctations - v w tangential velocity of the pipe wall - v* friction velocity, - axial mean velocity - v ZM maximum axial velocity - dimensionless radial distance from pipe wall, - y + dimensionless radial distance from pipe wall - y 1 + constant - Z rotation parameter,Z =v w/v * =N Re D /2Re* - m eddy viscosity - ( m )0 eddy viscosity in a non-rotating pipe - coefficient of friction loss - von Karman constant - 1 constant, equation (31) - density - dynamic viscosity - kinematic viscosity  相似文献   

16.
Large-Eddy-Simulation of turbulent heat transfer for water flow in rotating pipe is performed, for various rotation ratios (0 ≤ N ≤ 14). The value of the Reynolds number, based on the bulk velocity and pipe diameter, is Re = 5,500. The aim of this study is to examine the effect of the rotating pipe on the turbulent heat transfer for water flow, as well as the reliability of the LES approach for predicting turbulent heat transfer in water flow. Some predictions for the case of non-rotating pipe are compared to the available results of literature for validation. To depict the influence of the rotation ratio on turbulent heat transfer, many statistical quantities are analyzed (distributions of mean temperature, rms of fluctuating temperature, turbulent heat fluxes, higher-order statistics). Some contours of instantaneous temperature fluctuations are examined.  相似文献   

17.
Results are given from an investigation of longitudinal turbulent diffusion by the nuclear magnetic tracer method, and a technique is described for determining the velocity distribution function of the fluid particles in the pipe cross section.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 105–110, November–December, 1971.  相似文献   

18.
19.
Investigations into the characteristics of turbulent heat transfer and coherent flow structures in a plane-channel subjected to wall-normal system rotation are conducted using direct numerical simulation (DNS). In order to investigate the influence of system rotation on the temperature field, a wide range of rotation numbers are tested, with the flow pattern transitioning from being fully turbulent to being quasilaminar, and eventually, fully laminar. In response to the Coriolis force, secondary flows appear as large vortical structures, which interact intensely with the wall shear layers and have a significant impact on the distribution of turbulence kinetic energy (TKE), turbulence scalar energy (TSE), temperature statistics, and turbulent heat fluxes. The characteristic length scales of turbulence structures responsible for the transport of TSE are the largest at the quasilaminar state, which demands a very large computational domain in order to capture the two-dimensional spectra of temperature fluctuations. The effects of the Coriolis force on the turbulent transport processes of the temperature variance and turbulent heat fluxes are thoroughly examined in terms of their respective budget balances.  相似文献   

20.
The turbulent flow in a pipe of annular cross section is studied for the first time through a direct numerical simulation (DNS) using the Navier–Stokes equations written in cylindrical coordinates. To this aim a novel numerical method is developed, which extends to the cylindrical coordinate system an existing, efficient method designed for cartesian coordinates, and allows us to eliminate the pressure and formulate the problem in two scalar unknowns. The unnecessary increase of resolution at smaller radius typically brought about by polar coordinates, with its consequent stability limitations, is avoided by changing the number of azimuthal Fourier modes with the radial coordinate itself. In addition, the azimuthal extension of the computational domain is reduced, for the cases with lowest curvature, by considering only a part of the annulus, without loss of physical significance of the results. A computer code based on this method is run on a desktop PC for the simulation (with up to 16 million degrees of freedom) of the turbulent flow in a pipe with annular cross section, in a range of relatively low curvatures. This investigation highlights that curvature effects are already evident, even on first order turbulence statistics like the mean axial velocity distribution, in a low-curvature range where it is commonly believed that the flow should be hardly distinguishable from the flow over a plane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号