首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
采用混合中度嗜热微生物研究4种碳材料(人造石墨、炭黑、活性炭和碳纳米管)对黄铜矿浸出的催化作用。结果表明,添加人造石墨和活性炭能使溶液pH值降低,氧化还原电位维持在合适的范围,使浸出液中总铁、三价铁浓度和矿渣表面吸附微生物的数量增加,最终提高黄铜矿中铜的浸出率;而添加炭黑和碳纳米管能抑制浸矿微生物的生长,最终导致浸出效率降低。X射线衍射分析表明,在添加人造石墨和活性炭实验组中,黄钾铁矾和硫膜是钝化层的主要成分,但钝化层的形成不会影响黄铜矿的进一步分解。此外,人造石墨和活性炭的添加使浸出体系中游离微生物和吸附微生物的群落结构发生改变。在黄铜矿浸出末期,硫氧化茵A.caldus S1(丰度为93%~98%)成为优势菌种,而铁氧化菌L.ferriphilum YSK所占比例仅为1%~2%。  相似文献   

2.
为了探明磷灰石在微生物浸出黄铜矿体系中的溶出特性及其对黄铜矿浸出的影响,选择粒径小于43μm的磷灰石与粒径小于74μm的黄铜矿以及At.f菌组成矿浆浸出体系,考察不同At.f菌接种量对于磷灰石溶出速率的影响及对黄铜矿浸出效果的影响。结果表明:浸出体系中含低浓度PO3-4可以提高铜的浸出效率;当At.f菌接种量为5%时,微生物浸出体系中磷灰石溶出的PO3-4浓度最小,为0.62 mg/L,此时黄铜矿的最终浸出率最高,达到57.4%,比PO3-4溶液浓度最高时体系的铜浸出率提高近30%。通过对微生物浸出前、后的浸渣进行扫描电镜、能谱分析和XRD分析发现,浸出后磷灰石表面浸蚀不明显,而黄铜矿表面浸蚀明显,同时浸渣中有新物质铵黄铁矾生成;磷灰石对于新生成的沉淀有一定的吸附作用,而且溶出较低浓度的PO3-4体系能提高黄铜矿的浸出。  相似文献   

3.
混合高温菌浸出黄铜矿及浸出过程中微生物群落的演替   总被引:1,自引:0,他引:1  
研究3株极端嗜热古菌(金属硫叶菌,Sulfolobus metallicus JCM 9184;瑟杜生金属球菌,Metallosphaera sedula JCM 9185和万座酸菌,Acidianus manzaensis YN25)在不同起始pH值和不同温度条件下对黄铜矿的混合浸出,并对浸矿过程中混合菌群落的动态演替进行分析.结果表明:在起始pH 1.5时的铜浸出率明显高于在起始pH 2.5时的铜浸出率,而65 ℃条件下的铜浸出率高于75 ℃时的铜浸出率.利用限制性长度多态性(RFLP)分析65 ℃、起始pH 1.5条件下的微生物群落演替,结果显示:在黄铜矿的浸出前期Sulfolobus metallicus是占据优势的菌种,而到后期Acidianus manzaensis的比例则会上升,并最后取代Sulfolobus metallicus成为优势种.  相似文献   

4.
在合成的胞外聚合物(EPS)溶液中,研究不同起始总铁量、不同Fe(III)与Fe(II)摩尔比条件下嗜酸氧化亚铁硫杆菌浸出黄铜矿过程中pH、电位、可溶性铁离子和Cu2+浓度随浸出时间的变化。结果表明:当溶液电位低于650mV(vsSHE)时,因细菌产生的EPS可通过絮凝黄铁钾钒延缓污染,即使铁离子浓度达到20g/L,黄铁钾钒对细菌浸出黄铜矿的阻碍作用也不是致命的,但随着铁离子浓度的增加而增加;细菌氧化的铁离子容易吸附在黄铜矿表面的EPS表层,有黄铁钾钒的EPS层是弱离子扩散壁垒,细菌通过把EPS空间内外的Fe2+氧化成Fe3+,进一步创造高于650mV的电位,导致EPS层离子扩散性能的快速恶化,严重地和不可逆地阻碍生物浸出黄铜矿。  相似文献   

5.
采用3种中等嗜热微生物:喜温硫杆菌(Acidithiobacillus caldus,A.c)、嗜铁钩端螺旋菌(Leptospirillum ferriphilu,L.f)、嗜热氧化硫化杆菌(Sulfobacillus thermosulfidooxidans,S.t)对黄铜矿精矿进行浸出。探讨浸出过程中的微生物生长优化及搅拌反应器浸出条件优化。微生物最佳生长条件如下:生长温度为45℃、初始p H为1.5。驯化过的浸矿细菌的生长及浸出率明显高于未驯化的,驯化后浸出率在矿浆浓度为50 g/L时达到最大,为94.00%;当矿浆浓度达到100 g/L时,铜的浸出率稳定在80%左右。搅拌反应器的最优化浸出条件如下:搅拌速度350 r/min,充气强度500 m L/min。在此条件下,对黄铜矿精矿进行浸出,浸出时间为30 d时,最终铜离子浓度为17.36 g/L,铜的浸出率为85.60%。  相似文献   

6.
利用X-射线光电子能谱(XPS)和循环伏安(CV)法研究黄铜矿的钝化膜组成。浸出试验结果表明:无菌浸出和微生物浸出黄铜矿30 d后,Cu的浸出率分别为4.0%和21.5%,Fe的浸出率分别为3.8%和10.5%。XPS分析结果表明:黄铜矿经无菌浸出和微生物浸出后,黄铜矿晶格的中Fe原子优先溶解到溶液中,并且在其表面形成S22-、Sn2-和S0。此外,黄铜矿经微生物浸出后,其表面还检测到SO42-,并且认为SO42-是以黄钾铁矾的形式存在。CV研究结果表明:Cu1-xFe1-yS2-z(yx)和S0导致黄铜矿电极表面钝化。元素硫和黄钾铁矾包裹在黄铜矿表面对其浸出有一定的影响,然而二硫化物、多硫化物或者缺金属硫化物对阻碍黄铜矿浸出起更关键的作用。  相似文献   

7.
绢云母对黄铜矿微生物浸出的影响   总被引:3,自引:0,他引:3  
采用以Acidithiobacillus ferrooxidans为主的混合菌,研究绢云母对微生物浸出黄铜矿的影响。结果表明,铜的浸出率随着绢云母粒度的减小而增加,随着绢云母质量分数的增加而呈先升高后降低的趋势。在添加粒度为-33μm、质量分数为5.0%的绢云母时,铜的最高浸出率为54.88%,比不添加绢云母时的铜浸出率提高了约12%,表明绢云母能促进黄铜矿的微生物浸出。绢云母的加入可使浸出体系pH值降低,最终pH值低于1.22。在浸出过程中,新生成的物质主要是铵黄铁矾,它覆盖于黄铜矿的表面,对微生物浸出铜有一定的阻碍作用。  相似文献   

8.
在对黄铜矿、黄铁矿晶体结构差异性分析的基础上,研究在相同生物浸出条件下晶体结构对两矿物浸出速率及浸矿用菌种群落演替规律的影响,并对其产生原因进行分析。结果表明:黄铜矿晶胞中单位结构基元内不同结合方式原子间浸出难易程度不同,导致黄铜矿生物浸出速率随浸出时间的延长而不断降低;黄铁矿晶胞内各原子间结合方式单一,因而其浸出速率基本稳定。两矿物浸出过程中浸矿用菌种群落演替规律存在差异,在黄铜矿生物浸出过程中,Leptospirillum ferriphilum(L.f)由优势菌(占98%以上)转为劣势菌(占37%);在黄铁矿生物浸出过程中,L.f始终为优势菌(占90%以上)。由于L.f对Fe2+供应较敏感,因而两矿物晶体结构不同所决定的Fe2+供应差异是浸矿用菌种群落演替差异产生的根本原因。  相似文献   

9.
3种典型能量代谢菌浸出黄铜矿及其硫形态的转化   总被引:1,自引:0,他引:1  
比较了3种典型嗜中温铁/硫代谢菌——Acidithiobacillus ferrooxidans、Leptospirillum ferriphilum及Acidithiobacillus thiooxidans单独及混合浸出黄铜矿过程中细菌硫氧化、铁氧化情况。同时利用XRD、硫的K边X射线吸收近边结构光谱(XANES)等分析手段研究3种细菌单独/混合浸出黄铜矿过程中矿物组成成分和矿物表面硫的形态变化。结果表明:在浸出初期电位低于400 mV(vs SCE)时,黄铜矿的浸出速率较快,此后电位迅速升高至540 mV,黄铜矿浸出速率明显变慢。混合菌浸出时体系的硫/铁氧化活性较单一菌高,根据XANES拟合分析发现,混合菌浸出时矿物表面元素硫及黄钾铁矾积累量明显减少,浸出初期辉铜矿产量明显高于单一细菌浸出的。  相似文献   

10.
研究斑铜矿在50°C的混合中等嗜热微生物浸出。通过XRD和XPS表征在斑铜矿浸出过程中形成的中间产物,并利用φh-p H图和循环伏安曲线进一步分析斑铜矿浸出过程中铜状态的转化。结果表明:较高的溶液(氧化还原)电位更有利于斑铜矿的浸出;在斑铜矿的浸出过程中可能形成方黄铜矿、铜蓝、黄铜矿以及二硫化物和多硫化物等中间产物;Cu 2p光电子能谱显示,斑铜矿和中间产物中铜的价态均为+1。斑铜矿和黄铜矿之间可以相互转化,并且两者都可以进一步转化为铜蓝和/或辉铜矿。  相似文献   

11.
The effect of extracelluar polymeric substances(EPS) on the bioleaching chalcopyrite concentrates in the presence of iron- and sulphur-oxidizing bacteria (A.ferrooxidans) was studied.The bacterial number,pH,redox potential,and the concentrations of Fe2+and Cu2+ ions were investigated.The leached residues were analyzed by the X-ray diffraction and FT-IR.The results indicate that the EPS makes the bacteria adhere to the chalcopyrite surface easily and it is helpful for bacteria in disadvantageous environment.At the same time,EPS film layer with Fe3+ deposits on the surface of chalcopyrite and becomes a barrier of oxygen transfer to chalcopyrite to passivate chalcopyrite,and creates the high redox potential space through concentrating Fe3+ ions to accelerate bioleaching pyrite in chalcopyrite concentrates.The results suggest that EPS formation promotes bioleaching pyrite and inhibits bioleaching chalcopyrite,especially under high potential condition.  相似文献   

12.
The effect of extracelluar polymeric substances(EPS) on the bioleaching chalcopyrite concentrates in the presence of ironand sulphur-oxidizing bacteria (A. ferrooxidans) was studied. The bacterial number, pH, redox potential, and the concentrations of Fe^2+ and Cu^2+ ions were investigated. The leached residues were analyzed by the X-ray diffraction and FT-IR. The results indicate that the EPS makes the bacteria adhere to the chalcopyrite surface easily and it is helpful for bacteria in disadvantageous environment At the same time, EPS film layer with Fe^3+ deposits on the surface of chalcopyrite and becomes a barrier of oxygen transfer to chalcopyrite to passivate chalcopyrite, and creates the high redox potential space through concentrating Fe^3+ ions to accelerate bioleaching pyrite in chalcopyrite concentrates. The results suggest that EPS formation promotes bioleaching pyrite and inhibits bioleaching chalcopyrite, especially under high potential condition.  相似文献   

13.
元素硫对黄铜矿生物浸出行为及群落结构的影响(英文)   总被引:1,自引:0,他引:1  
研究3种典型铁/硫代谢菌—Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum及Acidithiobacillus thiooxidans混合浸出黄铜矿过程中铁/硫氧化活性、群落结构(PCR-RFLP)的变化,以及不同浓度的元素硫对其影响。结果发现,加入3.193g/L元素硫能促进细菌的表观硫氧化活性,改变浸矿体系的群落结构,并进一步影响钝化层的形成、金属离子的溶出,其浸出率(71%)较未添加硫的(67%)有一定程度的提高。而过量的元素硫会抑制铜的浸出(浸出率44%)。  相似文献   

14.
对4株纯的极端嗜热古菌及它们的混合菌在生物浸出黄铜矿过程中的硫氧化活性进行对比研究。结果表明,混合菌比纯菌拥有更高的硫氧化活性,它大幅度促进黄铜矿浸出率的提高。表征嗜热古菌硫氧化活性的参数值通常受很多因素的影响,以致在不同的硫氧化菌和不同的条件下生物浸出黄铜矿时,这些参数很难准确地反映出相应的硫氧化活性。因此,期待找到一种能有效表征浸矿菌硫氧化活性的方法。  相似文献   

15.
In order to investigate the contributions of contact and non-contact cells of Acidianus manzaensis(A.manzaensis) YN25 to the bioleaching of chalcopyrite,three experiments were carried out in the modified shake flasks.The redox potential,pH,cell density,copper and iron ions in the solution were monitored,and the morphological feature and chemical composition of the leached residues were analyzed.The highest leaching efficiency of Cu and Fe was reached in the experiment where the A.manzaensis YN25 could contact the surface of the chalcopyrite.There was no precipitation of jarosite in the leached residues of three experiments,but there was elemental sulfur in the leached residues when the cells could not contact the chalcopyrite.From these results,it is apparent that the leaching of the chalcopyrite is the cooperative action of the contact and non-contact A.manzaensis YN25.  相似文献   

16.
Bioleaching of chalcopyrite often encountered the formation of passivation layer, which inhibited the leaching process and resulted in a low leaching rate. This inhibitory effect can be eliminated by thermophilic biole- aching. The industrial test of BioCOP technology based on thermophiles was successfully completed, which confirmed the feasibility of chalcopyrite bioleaching. However, industrial leaching rate of chalcopyrite heap bioleaching is lower. This paper described the development status and industrial test of chalcopyrite heap bioleaching technology. The reasons for the lower efficiency of chalcopyrite heap bioleaching were analyzed. The strategies for successful chalcopyrite heap bioleaching were proposed.  相似文献   

17.
In the past decade, progress in the field of biohydrometallurgy had been significant. A total of 17 novel biomining microorganisms were discovered, and eight copper heap bioleaching plants and 11 gold biooxidation plants were established or expanded. In this review, it was summarized the physiological properties of the newly isolated biomining microorganisms and three novel microbial ecological methods for studying microbial community dynamics and structure. In addition, biohydrometallurgy research on rare metals such as uranium,molybdenum, tellurium, germanium, indium, and secondary rare metal resources, as well as heavy nonferrous metals such as copper, nickel, cobalt, and gold has been reviewed, with an emphasis on China. In future, further studies on bioleaching of chalcopyrite, rare metals, secondary resources from waste, and environmental pollution caused by resource utilization are necessary.  相似文献   

18.
The effect of pH values on the extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans was comparatively investigated in different phases of bacterial growth during chalcopyrite bioleaching. The results indicate that the extracellular protein is always more than the extracellular polysaccharide secreted by attached cells on the chalcopyrite, on the contrary, and is always less than the extracellular polysaccharide secreted by free cells in the solution at bacterial adaptive phase, logarithmic phase and stationary phase whenever pH value is at 1.0, 1.5, 2.0 or 2.5; free cells are mainly through the secretion of extracellular polysaccharide rather than the extracellular protein to fight against disadvantageous solution environment, such as high concentration of metal ions and unsuitable pH solution; both amounts of polysaccharide and protein secreted by attached cells are mainly positively related to the solution acidity rather than the total concentration of soluble metal ions. The experimental results imply that bacteria are mainly through secreting more extracellular polysaccharide to fight against disadvantageous environment and the extracellular protein perhaps plays an important role in oxidation–reduction reactions in the bioleaching system.  相似文献   

19.
1 INTRODUCTIONChalcopyriteisoneofthemostimportantcopperminerals.Biohydrometallurgyhasgraduallybecomeanimportanttechnologyintreatinglow gradecopperores,especiallywhentheminingindustryhastobefaceduptoincreasinglyseriousproblemssuchastheprogressingexhaust…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号