首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
基于FPGA的DDS正弦信号发生器的设计和实现   总被引:17,自引:0,他引:17       下载免费PDF全文
余勇  郑小林   《电子器件》2005,28(3):596-599
利用FPGA芯片及D/A转换器,采用直接数字频率合成技术,设计实现了一个频率、相位可控的正弦信号发生器,同时阐述了直接数字频率合成(DDS)技术的工作原理、电路结构,及设计的思路和实现方法。经过设计和电路测试,输出波形达到了技术要求,控制灵活、性能较好,也证明了基于FPGA的DDS设计的可靠性和可行性。  相似文献   

2.
正弦信号发生器的设计   总被引:1,自引:0,他引:1  
以单片机和FPGA为控制和处理核心,基于直接数字频率合成原理,利用DDS集成器件AD9851实现100 Hz~19 MHz输出的正弦信号发生器.通过自动增益控制(AGC)和功率放大,在50Ω负载情况下.100 Hz~19 MHz范围内,系统输出正弦波电压峰-峰值(6+1)V.系统硬件设计采用EDA工具,软件采用模块化的编程思想.  相似文献   

3.
基于AD9851的正弦信号发生器设计   总被引:1,自引:0,他引:1  
基于直接数字频率合成(DDS)原理,采用AD9851型DDS器件设计一个正弦信号发生器.实现50 Hz~15 MHz范围内的正弦波输出,同时通过对器件的控制编程与相关的简单外部电路切换产生各种调制信号.通过自动增益控制(AGC)和功率放大,在50 Ω负载的情况下,该正弦信号发生器在100 Hz~10 MHz范围内输出稳定正弦波,电压峰峰值为0~5 V±0.3 V.  相似文献   

4.
祝敏  曾德志  廖小新 《电子技术》2007,34(11):24-25
直接数字合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快等优点,在雷达及通信等领域有着广泛的应用前景.系统采用AD9850(DDS)与AT89S52单片机相结合的方法,以AD9850为频率合成器,以单片机为进程控制和任务调度的核心,设计了一个信号发生器.实现了输出频率在10Hz~1MHz范围可调,输出信号频率稳定度优于10-3的正弦波、方波和三角波信号.正弦波信号的电压峰峰值Vopp能在0~5V范围内步进调节,步进间隔达到0.1V,所有输出信号无明显失真,且带负载能力强.  相似文献   

5.
正弦信号发生器   总被引:2,自引:1,他引:1  
依据直接数字频率合成(DDFS)技术及各种调制信号相关的原理,设计了一个可输出正弦波,调幅波,调频波,PSK及ASK等信号的正弦信号发生器.该信号发生器的正弦波由AD9851型集成DDS器件产生;调频波采用DDS调频法实现;调幅波通过由模拟乘法器AD835搭建的调幅电路产生;ASK和PsK信号在FPGA给出的基带序列信号控制下通过移相电路与多路复用器的结合电路产生.利用固态继电器阵列可实现各种信号的通道选择:利用后级功率放大电路驱动50Ω负栽,可保证其输出电压幅度稳定在6 1V,且整个系统结构简单,界面友好.  相似文献   

6.
基于FPGA的幅值可调信号发生器设计   总被引:3,自引:0,他引:3  
张有志  张鹍 《电子设计工程》2011,19(9):115-117,120
针对信号发生器对输出频率精度高和幅值可调的要求,采用直接数字频率合成(DDS)技术,提出一种基于FP-GA的幅值、频率均可调的、高分辨率、高稳定度的信号发生器设计方案。采用AT89S52单片机为控制器,控制FPGA产生波形的数字信号,结合双数模(D/A)转换器及低通滤波器,最终实现输出信号幅值0~5 V可调,分辨率为10 bits;频率范围1 Hz~10 MHz可调,最小分辨率为1 Hz;频率稳定度优于10-4。信号参数可通过键盘进行设置,并在LCD上输出。由于FPGA的可编程性,易于对系统进行升级和优化。  相似文献   

7.
信号发生器是现代电子测量中不可或缺的工具之一,广泛应用于通信、测量、雷达控制等领域。文中基于DDS技术,提出了一种以AD9854为核心的信号发生器设计方法。该设计通过PC机和控制台软件设置输出信号参数,结合单片机对频率控制字进行处理,可产生正弦波、方波以及FSK、ASK等多种调制波形,输出频率最高可达150 MHz,频率分辨率达1 μHz。实验结果表明,该设计具有功能全、精度高、可编程性好等优点。  相似文献   

8.
分析了DDS技术的基本原理和基本结构,介绍了一种基于FPGA的DDS信号发生器设计方法。以FPGA芯片EP2C35F672C8为核心器件,辅以必要的模拟电路,在Quartus II9.0平台下实现系统设计的综合与仿真。实验测试表明该信号发生器输出的波形具有平滑、稳定度高和相位连续等优点,具有一定的工程实践意义。  相似文献   

9.
摘要:为提高FM信号发生器的频率准确度和稳定度,并使其相关技术参数可调,设计了一种基于FPGA和直接数字频率合成(DDS)技术的产生方法。系统以labwindows/cvi为上位机开发环境,实现FM信号调制参数的可调,并通过PCIE接口将上位机设置的FM信号控制字和波形数据传给FPGA,FPGA内部通过控制DDS核来实现FM信号的产生。测试结果表明,FM信号的频率精度高且稳定性好,最高输出载波频率达40MHz,幅度精度能达到5mV。该FM信号发生器在软件无线电、雷达目标特征识别和雷达距离探测等领域具有很高的应用价值和广阔的应用空间。  相似文献   

10.
提出了一种基于ARM、高精度直接数字频率合成器DDS和蓝牙技术的信号发生器的设计方案,在该方案中,ARM核心处理器通过蓝牙模块接收蓝牙终端发送的信号频率和相位控制字并将其发送到DDS模块,从而生成所需的正弦波信号。经测试,该系统能输出040 MHz频带内的正弦波和方波,可生成调频和调相等多种调制方式的调制信号,以及实现高速扫频功能。  相似文献   

11.
基于DDS的程控信号发生器设计   总被引:1,自引:0,他引:1  
尚建荣 《现代电子技术》2011,34(9):105-107,110
采用了直接数字频率合成技术(DDS)和计算机控制技术,选择美国Analog Devices公司的高度集成DDS芯片AD9851和AT89S52单片机作为控制器件,设计了一种基于DDS的程控信号发生器。用C语言进行了软件应用设计。实验结果表明,该信号发生器能较好地产生较高稳定度的激励信号,具有较高的实用价值。  相似文献   

12.
用于冷原子干涉仪的声光调制器数字驱动系统   总被引:1,自引:1,他引:0  
为了满足冷原子干涉实验对激光移频的需求、实现移频速率的精确可控,设计并实现了一个带有操作界面的声光调制器数字驱动与控制系统。该系统由三个部分组成,分别是上位机,微处理器控制芯片,射频信号产生芯片。其中上位机用于收集控制信息;微处理器控制芯片用于根据上位机发送来的控制信息实现对射频信号产生芯片的控制、产生驱动声光调制器晶体的射频信号,从而实现对实验中所需的激光进行移频。该系统可输出频率为0~150 MHz且相位噪声低至-116 dBc/Hz的射频信号,同时可有效控制输出信号的幅度、相位和扫频速率等,该系统提供了满足冷原子干涉实验需求的多种工作模式。  相似文献   

13.
采用直接数字频率合成技术,设计了一种采用ARM控制以AD9833为核心的信号源,由ARM对输入数据进行处理,进而执行对DDS芯片编程,控制产生所需的频率、相位和波形信号,并由LCD显示各种信息,最后详细分析了该信号发生器的系统结构、软硬件设计和具体实现电路。  相似文献   

14.
采用直接数字频率合成技术(DDS),通过数字控制相位信号的增量在FPGA中实现频率可调的信号发生器,所产生的信号不仅幅度频率灵活可调,并具有频率分辨率高、切换速度快、相位噪声低等优点,因而该系统设计在相关的科研实践中具有重要意义。  相似文献   

15.
利用直接数字频率合成器(DDS)与CPLD技术和单片机控制技术,研制和设计了高分辨率、高稳定度的函数发生器。给出了所设计系统的主要硬件电路、程序流程图和频率控制宇传送流程图;提出并应用了一种CPLD与单片机的通信方法,实现了高精度和宽频率的信号产生。实验和实测结果表明所设计系娩结构简单,使用方便、交互性好,性能稳定可靠,具有较高的应用价值。  相似文献   

16.
采用ARM与DDS技术的水声信号发射机   总被引:1,自引:1,他引:1  
介绍了采用ARM7芯片LPC2131为主控与DDS频率合成芯片AD9833组成的水声信号发射机,根据LPC2131和AD9833芯片的功能与特点,从硬件电路构成和软件设计探讨实现了各类水声调制信号的输出功能,结合ARM技术并通过SPI串行通信协议实现频率信号产生,完成水声通信系统中的编码信号与调制信号的合成,并可通过计算机串口实现编码变换。  相似文献   

17.
基于FPGA和直接数字频率合成(DDS)技术,提出一种以软件方法实现波形信号垂直 偏移量任意可调的信号发生器的设计方案,通过引入除法器、加法器、数据取反 器实现对波形信号的幅度调节和垂直偏移量调节。采用FPGA芯片EP1C12Q240C8实验 验证了该波形信号发生器不需要外加硬件电路就可以实现对输出波形垂直偏移量的任意调节 ,且能灵活改变输出波形信号的幅度、相位和频率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号