首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents transient stability assessment of a large 87-bus system using a new method called the probabilistic neural network (PNN) with incorporation of feature selection and extraction methods. The investigated power system is divided into smaller areas depending on the coherency of the areas when subjected to disturbances. This is to reduce the amount of data sets collected for the respective areas. Transient stability of the power system is first determined based on the generator relative rotor angles obtained from time domain simulations carried out by considering three phase faults at different loading conditions. The data collected from the time domain simulations are then used as inputs to the PNN. Feature reduction techniques are then incorporated to reduce the number of features to the PNN which is used as a classifier to determine whether the power system is stable or unstable. It can be concluded that the PNN with the incorporation of feature reduction techniques reduces the time taken to train the PNN without affecting the accuracy of the classification results.  相似文献   

2.
Power system security is one of the major concerns in competitive electricity markets driven by trade demands and regulations. If the system is found to be insecure, timely corrective measures need to be taken to prevent system collapse. This paper presents an approach based on a counterpropagation neural network (CPNN) to identify and rank the contingencies expected to reduce or eliminate the steady-state loadability margin of the system, making it prone to voltage collapse. It has been shown that unlike other artificial neural networks (ANN) paradigms, which start with random weights, CPNN is very sensitive to initial weights. To reduce the dimension and training time, a novel feature selection method, based on the coherency existing between load buses with respect to voltage dynamics, is employed to select significant input features for the CPNN. Once trained, the CPNN is found to rank voltage contingencies accurately for previously unknown system conditions very fast. Due to its fast training, the proposed CPNN will be particularly useful for power system planning studies, as a number of combinations can be tried within a small time frame. The effectiveness of the proposed approach has been demonstrated on IEEE 30-bus test system and a 75-bus practical Indian system.  相似文献   

3.
This paper presents a core vector machine (CVM)-based algorithm for on-line voltage security assessment of power systems. To classify the system security status, a CVM has been trained for each contingency. The proposed CVM-based security assessment has very small training time and space in comparison with support vector machines (SVM) and artificial neural networks (ANNs)-based algorithms. The proposed algorithm produces less support vectors (SV) and therefore is faster than existing algorithms. In this paper, a new decision tree (DT)-based feature selection technique has been presented, too. The proposed CVM algorithm has been applied to New England 39-bus power system. The simulation results show the effectiveness and the stability of the proposed method for on-line voltage security assessment procedure of large-scale power system.  相似文献   

4.
Conventionally, optimal reactive power dispatch (ORPD) is described as the minimization of active power transmission losses and/or total voltage deviation by controlling a number of control variables while satisfying certain equality and inequality constraints. This article presents a newly developed meta-heuristic approach, chaotic krill herd algorithm (CKHA), for the solution of the ORPD problem of power system incorporating flexible AC transmission systems (FACTS) devices. The proposed CKHA is implemented and its performance is tested, successfully, on standard IEEE 30-bus test power system. The considered power system models are equipped with two types of FACTS controllers (namely, thyristor controlled series capacitor and thyristor controlled phase shifter). Simulation results indicate that the proposed approach yields superior solution over other popular methods surfaced in the recent state-of-the-art literature including chaos embedded few newly developed optimization techniques. The obtained results indicate the effectiveness for the solution of ORPD problem of power system considering FACTS devices. Finally, simulation is extended to some large-scale power system models like IEEE 57-bus and IEEE 118-bus test power systems for the same objectives to emphasis on the scalability of the proposed CKHA technique. The scalability, the robustness and the superiority of the proposed CKHA are established in this paper.  相似文献   

5.
As a novel and promising learning technology, extreme learning machine (ELM) is featured by its much faster training speed and better generalization performance over traditional learning techniques. ELM has found applications in solving many real-world engineering problems, including those in electric power systems. Maintaining frequency stability is one of the essential requirements for secure and reliable operations of a power system. Conventionally, its assessment involves solving a large set of nonlinear differential–algebraic equations, which is very time-consuming and can be only carried out off-line. This paper firstly reviews the ELM’s applications in power engineering and then develops an ELM-based predictor for real-time frequency stability assessment (FSA) of power systems. The inputs of the predictor are power system operational parameters, and the output is the frequency stability margin that measures the stability degree of the power system subject to a contingency. By off-line training with a frequency stability database, the predictor can be online applied for real-time FSA. Benefiting from the very fast speed of ELM, the predictor can be online updated for enhanced robustness and reliability. The developed predictor is examined on the New England 10-generator 39-bus test system, and the simulation results show that it can exactly (within acceptable errors) and rapidly (within very small computing time) predict the frequency stability.  相似文献   

6.
Unified power flow controller (UPFC) is one of the most effective flexible AC transmission systems (FACTS) devices for enhancing power system security. However, to what extent the performance of UPFC can be brought out, it highly depends upon the location and parameter setting of this device in the system. This paper presents a new approach based on computational intelligence (CI) techniques to find out the optimal placement and parameter setting of UPFC for enhancing power system security under single line contingencies (N?1 contingency). Firstly, a contingency analysis and ranking process to determine the most severe line outage contingencies, considering lines overload and bus voltage limit violations as a performance index, is performed. Secondly, a relatively new evolutionary optimization technique, namely: differential evolution (DE) technique is applied to find out the optimal location and parameter setting of UPFC under the determined contingency scenarios. To verify our proposed approach and for comparison purposes, simulations are performed on an IEEE 14-bus and an IEEE 30-bus power systems. The results, we have obtained, indicate that DE is an easy to use, fast, robust and powerful optimization technique compared with genetic algorithm (GA) and particle swarm optimization (PSO). Installing UPFC in the optimal location determined by DE can significantly enhance the security of power system by eliminating or minimizing the number of overloaded lines and the bus voltage limit violations.  相似文献   

7.
Training data matrix used for classification of text documents to multiple categories is characterized by large number of dimensions while the number of manually classified training documents is relatively small. Thus the suitable dimensionality reduction techniques are required to be able to develop the classifier. The article describes two-step supervised feature extraction method that takes advantage of projections of terms into document and category spaces. We propose several enhancements that make the method more efficient and faster than it was presented in our former paper. We also introduce the adjustment score that enables to correct defected targets or helps to identify improper training examples that bias extracted features.  相似文献   

8.
This paper discusses the feasibility of implementing computational intelligence algorithms for power system analysis in an open source environment. The scope is specially oriented to education, training and research. In particular, the paper describes a software package, namely Computational Intelligence Applications to Power System (CIAPS), that implements a variety of heuristic techniques for vulnerability assessment of electrical power systems. CIAPS is based on Matlab and suited for analysis and simulation of small to large size electric power systems. CIAPS is used for solving power flow, optimal power flow, contingency analysis based on artificial neural networks and fuzzy logic techniques. A variety of illustrative examples are given to show the features of the developed software tool.  相似文献   

9.
This short communication presents a discussion of “Chaotic Krill Herd algorithm for optimal reactive power dispatch considering FACTS devices” by Aparajita Mukherjee et al. “Applied Soft Computing” 44 (2016) 163–190. In this paper, an experiment on the reactive power dispatches considering FACTS devices is presented with three example systems, namely 30, 57 and 118-bus test systems. In the reported results for the 57 and 118-bus test system, total losses of load flow with input voltage generators, transformers tab, and capacitor banks were different. In this regard, a clarification on calculations of loss is presented.  相似文献   

10.
基于粒子群优化的KPCA暂态稳定评估模型的特征提取   总被引:1,自引:0,他引:1  
提出一种核主成分分析法(KPCA),用于电力系统暂态稳定评估(TSA)模型中的输入向量特征提取,并利用粒子群优化算法(PSO)对核函数参数进行优化设置.以EPRI36系统为例,对基于支持向量机(SVM)分类的暂态稳定评估模型进行仿真,结果表明该方法不仅得到了良好的预测精度,而且大大降低了输入空间的维数.  相似文献   

11.
Regression techniques, such as ridge regression (RR) and logistic regression (LR), have been widely used in supervised learning for pattern classification. However, these methods mainly exploit the class label information for linear mapping function learning. They will become less effective when the number of training samples per class is small. In visual classification tasks such as face recognition, the appearance of the training sample images also conveys important discriminative information. This paper proposes a novel regression based classification model, namely Bayesian sample steered discriminative regression (BSDR), which simultaneously exploits the sample class label and the sample appearance for linear mapping function learning by virtue of the Bayesian formula. BSDR learns a linear mapping for each class to extract the image class label features, and classification can be simply done by nearest neighbor classifier. The proposed BSDR method has advantages such as small number of mappings, insensitiveness to input feature dimensionality and robustness to small sample size. Extensive experiments on several biometric databases also demonstrate the promising classification performance of our method.  相似文献   

12.
This paper aims to study the application of a heuristic optimization technique namely, Invasive Weed Optimization (IWO) technique for optimal protection coordination in power systems. The optimal relay coordination problem is formulated as a nonlinear constrained optimization, which is solved using Improved IWO (IIWO). The proposed IIWO algorithm modifies the standard deviation expression of the weed population. The simulation results show that IIWO has faster and better convergence compared with standard IWO. To further improve the computational efficiency, a hybrid IIWO method is also proposed which is obtained by defining sequential quadratic programming (SQP) as a subroutine in IIWO for searching local solutions, thus eliminate weaker weeds in the colonization process. The proposed techniques are tested on both the 9-bus test system and IEEE- 30 bus systems and the performance is compared. Relay coordination algorithm is developed in MATLAB, and the results are found to be effective and reliable.  相似文献   

13.
It has been discovered that some compounds in human breath can be used to detect some diseases and monitor the development of the conditions. A sensor system in tandem with certain data evaluation algorithm offers an approach to analyze the compositions of breath. Currently, most algorithms rely on the generally designed pattern recognition techniques rather than considering the specific characteristics of data. They may not be suitable for odor signal identification. This paper proposes a Sparse Representation-based Classification (SRC) method for breath sample identification. The sparse representation expresses an input signal as the linear combination of a small number of the training signals, which are from the same category as the input signal. The selection of a proper set of training signals in representation, therefore, gives us useful cues for classification. Two experiments were conducted to evaluate the proposed method. The first one was to distinguish diabetes samples from healthy ones. The second one aimed to classify these diseased samples into different groups, each standing for one blood glucose level. To illustrate the robustness of this method, two different feature sets, namely, geometry features and principle components were employed. Experimental results show that the proposed SRC outperforms other common methods, such as K Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), Artificial Neural Network (ANN), and Support Vector Machine (SVM), irrespective of the features selected.  相似文献   

14.
Some of the fundamental problems faced in the design of signature verification (SV) systems include the potentially large number of input features and users, the limited number of reference signatures for training, the high intra-personal variability among signatures, and the lack of forgeries as counterexamples. In this paper, a new approach for feature selection is proposed for writer-independent (WI) off-line SV. First, one or more preexisting techniques are employed to extract features at different scales. Multiple feature extraction increases the diversity of information produced from signature images, allowing to produce signature representations that mitigate intra-personal variability. Dichotomy transformation is then applied in the resulting feature space to allow for WI classification. This alleviates the challenges of designing off-line SV systems with a limited number of reference signatures from a large number of users. Finally, boosting feature selection is used to design low-cost classifiers that automatically select relevant features while training. Using this global WI feature selection approach allows to explore and select from large feature sets based on knowledge of a population of users. Experiments performed with real-world SV data comprised of random, simple, and skilled forgeries indicate that the proposed approach provides a high level of performance when extended shadow code and directional probability density function features are extracted at multiple scales. Comparing simulation results to those of off-line SV systems found in literature confirms the viability of the new approach, even when few reference signatures are available. Moreover, it provides an efficient framework for designing a wide range of biometric systems from limited samples with few or no counterexamples, but where new training samples emerge during operations.  相似文献   

15.
Increased interconnections and loading of power systems, sometimes, lead to insecure operation. Since insecure cases often represent the most severe threats to secure system operation, it is important that the user be provided with a measure for quantifying the severity of the cases both in planning and operational stages of a power system. The Euclidean distance to the closest secure operating point has been used as a measure of the degree of insecurity. Recently, artificial neural networks are proposed increasingly for complex and time-consuming problems of power system. This paper presents a parallel self-organised hierarchical neural network based approach for estimation of the degree of voltage insecurity. Angular distance based clustering is used to select the input features. The proposed method has been tested on IEEE 30-bus system and a practical 75-bus Indian system and found to be suitable for real time implementation in Energy management centre.  相似文献   

16.
Machine learning-based classification techniques provide support for the decision-making process in many areas of health care, including diagnosis, prognosis, screening, etc. Feature selection (FS) is expected to improve classification performance, particularly in situations characterized by the high data dimensionality problem caused by relatively few training examples compared to a large number of measured features. In this paper, a random forest classifier (RFC) approach is proposed to diagnose lymph diseases. Focusing on feature selection, the first stage of the proposed system aims at constructing diverse feature selection algorithms such as genetic algorithm (GA), Principal Component Analysis (PCA), Relief-F, Fisher, Sequential Forward Floating Search (SFFS) and the Sequential Backward Floating Search (SBFS) for reducing the dimension of lymph diseases dataset. Switching from feature selection to model construction, in the second stage, the obtained feature subsets are fed into the RFC for efficient classification. It was observed that GA-RFC achieved the highest classification accuracy of 92.2%. The dimension of input feature space is reduced from eighteen to six features by using GA.  相似文献   

17.
为了有效改善高光谱图像数据分类的精确度,减少对大数目数据集的依赖,在原型空间特征提取方法的基础上,提出一种基于加权模糊C均值算法改进型原型空间特征提取方案。该方案通过加权模糊C均值算法对每个特征施加不同的权重,从而保证提取后的特征含有较高的有效信息量,从而达到减少训练数据集而不降低分类所需信息量的效果。实验结果表明,与业内公认的原型空间提取算法相比,该方案在相对较小的数据集下,其性能仍具有较为理想的稳定性,且具有相对较高的分类精度。  相似文献   

18.
基于历史数据和深度学习的负荷预测已广泛应用于以电能为中心的综合能源系统中以提高预测精度,然而,当区域中出现新用户时,其历史负荷数据往往极少,此时,深度学习难以适用.针对此,本文提出基于负荷特征提取和迁移学习的预测机制.首先,依据源域用户历史负荷数据,融合聚类算法和门控循环单元网络构建源域数据的特征提取和分类模型;然后,...  相似文献   

19.
A study is presented on the application of particle swarm optimization (PSO) combined with other computational intelligence (CI) techniques for bearing fault detection in machines. The performance of two CI based classifiers, namely, artificial neural networks (ANNs) and support vector machines (SVMs) are compared. The time domain vibration signals of a rotating machine with normal and defective bearings are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to the classifiers for detection of machine condition. The classifier parameters, e.g., the number of nodes in the hidden layer for ANNs and the kernel parameters for SVMs are selected along with input features using PSO algorithms. The classifiers are trained with a subset of the experimental data for known machine conditions and are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a rotating machine. The roles of the number of features, PSO parameters and CI classifiers on the detection success are investigated. Results are compared with other techniques such as genetic algorithm (GA) and principal component analysis (PCA). The PSO based approach gave a test classification success rate of 98.6–100% which were comparable with GA and much better than with PCA. The results show the effectiveness of the selected features and the classifiers in the detection of the machine condition.  相似文献   

20.
Content Based Image Retrieval (CBIR) systems use Relevance Feedback (RF) in order to improve the retrieval accuracy. Research focus has been shifted from designing sophisticated low-level feature extraction algorithms to reducing the “semantic gap” between the visual features and the richness of human semantics. In this paper, a novel system is proposed to enhance the gain of long-term relevance feedback. In the proposed system, the general CBIR involves two steps—ABC based training and image retrieval. First, the images other than the query image are pre-processed using median filter and gray scale transformation for removal of noise and resizing. Secondly, the features such as Color, Texture and shape of the image are extracted using Gabor Filter, Gray Level Co-occurrence Matrix and Hu-Moment shape feature techniques and also extract the static features like mean and standard deviation. The extracted features are clustered using k-means algorithm and each cluster are trained using ANN based ABC technique. A method using artificial bee colony (ABC) based artificial neural network (ANN) to update the weights assigned to features by accumulating the knowledge obtained from the user over iterations. Eventually, the comparative analysis performed using the commonly used methods namely precision and recall were clearly shown that the proposed system is suitable for the better CBIR and it can reduce the semantic gap than the conventional systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号