首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
含锌萃余液的除铁与净化   总被引:1,自引:0,他引:1  
描述了从含锌萃余液中除去铁及其它杂质的试验结果。结果指出:MnO_2氧化除铁,除铁率可达99.99%,溶液中的砷与铁形成共同沉淀而被除主。锌粉置换除铜和黄药除钴也取得了较好的指标。  相似文献   

2.
研究了硫酸浸出含锌钴废催化剂的湿法治金过程,讨论了用最佳方案除去铁、锰、铝、铜、硅等多种杂质。原料中锌的浸出率高达99.19%,净化液中Co^2 的氧化沉淀率为98.48%,氯化钴溶液中Co^2 草酸铵沉淀率98.24%,浸出液中钴总回收率达96.75%。  相似文献   

3.
净化硫酸锰电解液时硫化锰和硫化钴沉淀的动力学   总被引:1,自引:0,他引:1  
1 前言从硫酸盐溶液中电积金属锰时,需要除去铁、镍、钴和锌之类杂质。以便在高电流效率下获得必须纯度的产品。实践中是通过控制加入硫化铵将杂质沉淀为硫化物来完成的。上述金属中,钴对电流效率的影响最不利,因此它的沉淀就最为重要。在工厂条件下  相似文献   

4.
从氧化钴矿石中提取钴的试验研究   总被引:2,自引:0,他引:2  
研究了从氧化钴矿石中回收钴.通过两段浸出,浸出渣中钴质量分数小于0.5%,钴浸出率达99%.通过黄钾铁钒法除铁,氟化钠法除钙、镁,亚硫酸钠法除铜,P204串级萃取法进一步去除杂质Fe、Ca、Mg、Cu、Zn、Mn、Pb、As等,P507萃取分离钴镍,最后通过沉淀得草酸钴产品,产品纯度符合要求.  相似文献   

5.
以复杂铜钴矿浸出溶液为原料,采用M5774萃取铜,硫酸反萃,铜的萃取率和反萃率均大于99%,萃余液用SO_2/空气混合气氧化中和除铁、锰,除铁后液铁和铝均小于0.005g/L,锰没有完全除掉,采用活性氧化镁沉淀镍和钴,在较优条件下,镍、钴沉淀率分别为97.73%和94.33%,用活性氧化钙沉淀锰和镁。  相似文献   

6.
针铁矿法从铜钴矿生物浸出液中除铁的研究   总被引:4,自引:2,他引:2  
采用针铁矿法除去萃铜后的铜钴矿细菌浸出液中的铁,并对除铁时的pH、氧化剂浓度、氧化时间、保温时间等因素进行优化。结果表明,控制氧化过程中pH为4.0、氧化温度70℃、保温时间1h、氧化剂浓度8%,除铁率和钴回收率分别为99.9%和99.5%。针铁矿法除铁可在常压和较低温度(70℃)下进行,而且不需外加其他金属阳离子就能获得过滤性能良好且可作为含铁富矿使用的沉淀渣。  相似文献   

7.
我厂制取电解钴的原料主要为镍电解精炼时富集的钴渣。原料通过溶解、净化除去铜、镍、铁等杂质,制得较纯的氢氧化钴,后者经烧结后,进行电炉还原熔炼,以除去铅、锌、锰、硫等杂质,即可浇铸成钴阳极,其化学成份(%)如下:Co96~98、Ni  相似文献   

8.
研究了从氏品位硫钴精矿焙砂浸出液中钴的富集及其与杂质的分离问题。所研究的浸出液已除去铁、铜、但钴含量仅为1g/L左右的硫酸溶液,而且镁、锌、镍、锰、硅等多种杂质约为钴的10倍左右。  相似文献   

9.
从铜铁钴合金渣中制取氧化钴工艺的研究   总被引:3,自引:0,他引:3  
研究了从铜冶炼炉渣中富集得到的铜铁钴合金渣中制得氧化钴的工艺流程,确定了熔炼,电解造液,除铁,铜等杂质的工艺条件。该工艺能有效地除去铁,铜等杂质,试验得到的氧化钴符合GB6518-86纯氧化钴粉Y1类要求,钴的直收率达84%以上,有价金属铜以海绵铜形态回收,其纯度达92.5%,回收率达98%以上,达到了综合回收利用的目的。  相似文献   

10.
电镍含钴废渣提取氧化钴新工艺   总被引:4,自引:0,他引:4  
秦玉楠 《中国钼业》2001,25(1):43-46
详述了利用电镍含钴废渣,经过硫酸还原溶解,黄钠铁矾法除铁、P-204萃取除杂质和萃取分离钴镍、氟化铵除钙镁、草酸铵沉淀钴、煅烧等步骤,提取氧化钴的新工艺流程及其生产方法。并介绍了采用此新工艺所制氧化钴粉状产品质量及钴镍的回收率(钴的总回收率不低于92%,镍的总回收率不低于95%)等。  相似文献   

11.
从废弃炉渣中回收钴、镍、铜的研究   总被引:4,自引:0,他引:4  
采用酸浸某厂废弃炉渣中Cu、Ni、Co、Cu、Ni浸出率达99%以上,Co浸出率达87%。浸出液采用铁粉置换法回收分离铜、黄钠铁矾法除铁、NaF法除钙镁、P204深度除杂和P507分离镍钴,除杂率达99.5%以上,浸出液中Cu、Ni、Co回收率均超过94%。  相似文献   

12.
针对锌焙砂酸浸液中高浓度Fe3+和Zn2+对微量In3+的光谱测定存在严重的基体干扰,提出一种铟与锌、铁粗分离,并使铟得以富集的还原-共沉淀前处理方法。用Na2SO3溶液将锌焙砂酸浸液中大量Fe3+还原成Fe2+,调节溶液pH值为4.0~4.5,溶液中少量未被还原的Fe3+形成Fe(OH)3沉淀,In3+也以In(OH)3形式共沉淀而得到富集,大量Zn2+和Fe2+则留在溶液中。富集铟的滤泥用酸溶解,以原子吸收光谱法测定铟。该方法对铟富集率达到98%以上,锌和铁的去除率分别达到90%以上,基本满足铟光谱测定的要求。  相似文献   

13.
从废弃炉渣中分离回收钴、镍   总被引:1,自引:0,他引:1  
梁妹 《湿法冶金》2007,26(3):157-162
用酸(硫酸+少量硝酸)浸出废弃炉渣,其中的Cu、Ni浸出率达99%以上,Co浸出率为87%。浸出液用铁粉置换法分离铜、黄钠铁矾法除铁、NaF法除钙镁、P204深度除杂、P507分离镍钴,杂质去除率达99.5%以上,Ni、Co回收率均超过94%。  相似文献   

14.
NdFeB magnets currently dominate the magnet market. Supply risks of certain rare earth metals(REM), e.g. Nd and Dy, impose efficient recycling schemes that are applicable to different types and compositions of these magnets with minimum use of chemicals and waste generation. In this study, a hydrometallurgical method was studied that could be adjusted to recover not only REM, but also other valuable metals(e.g.Co, Ni and Cu) that co-existed in the magnet. The magnet powders were completely dissolved in a dilute sulfuric acid solution giving more than 98% of dissolved iron in the ferrous state. Chemical oxidation of Fe~(2+) into Fe~(3+) by the addition of MnO 2 required only 1 h at ambient temperature. It was then possible to precipitate more than 99% of this ferric iron by adjusting the pH of the solution above 3 with either Ca(OH)_2 or MnO additions. However, the addition of Ca(OH)_2 resulted in the formation of gypsum and up to ca. 23% REM losses, possibly via co-precipitation into the gypsum. MnO elevated the Mn~(2+) concentration in the solution. However, it was found to be problematic that subsequent direct electrolysis removed Mn and Co. Low anodic current efficiencies(ACE) resulted in high energy consumption(EC), while incomplete Mn and Co removals and undesired REM losses were reported. Pre-electrolysis removals of REM and/or Co by oxalate and/or sulfide precipitation were proven to be successful and selective, but this enlarged the flowsheet considerably with only minor improvement of the Mn removal, ACE and EC.  相似文献   

15.
黄冰 《铜业工程》2020,(2):58-62
研究了以臭氧和氟化钠为脱杂试剂,采用"溶解造液--强氧化除铁钴--氟化除钙镁--结晶析出"为主干的工艺处理粗硫酸镍,深度脱除其中的铁、钴、钙、镁杂质的工艺可行性及最佳工艺条件。试验结果表明,以臭氧为强氧化剂,可深度脱除粗硫酸镍中的铁钴杂质,最佳反应条件为:反应温度80℃,时间8h,终点pH值4.5~5.0,反应终点溶液中铁、钴浓度小于0.005g/L;以氟化钠做添加剂,可深度脱除粗硫酸镍中的钙镁杂质,最佳反应条件为:反应温度90℃,时间2h,pH值5.5,氟化钠添加系数1.5,反应终点溶液中钙0.007g/L,镁0.005g/L;将"强氧化除铁钴"与"氟化钠除钙镁"工序相结合,可获得更好的除杂效果。  相似文献   

16.
The reuse of RE and cobalt in Co-based magnetic scraps was studied.The optimized feat lixiviated condition was:200 mesh,sulfuric acid dosage was of 1.4 times theoretic dosage,temperature was 80 oC and leaching time 1 h.The optimum technology conditions was:Na2S2O8 dosage was of 8 times theoretic dosage,oxidation temperature 80 oC,oxidation time 2 h and pH=4.5.Rare earth was precipitated by saturated(NH4)2C2O4 solution,after roasting of rare earth oxalate,rare earth oxide was received.Cobalt-iron residue was soaked by hydrochloric acid,the Fe(OH)3 was preferential solution,pH was adjusted to 1.4 by hydrochloric acid,Co(OH)3 did not dissolve,cobalt and iron were separated,after roasting of Co(OH)3,cobalt oxide was received.The total recovery of cobalt was found to be 97% and rare earths was 96%.  相似文献   

17.
五钠沉铟的工艺研究   总被引:1,自引:0,他引:1  
以三聚磷酸钠为沉淀剂,研究了模拟含铟加压浸出液和实际含铟加压浸出液中影响铟沉淀率的因素。结果表明:常温下,pH值范围在2.5~2.7,搅拌时间为1.5h,三聚磷酸钠与铟摩尔比为0.91∶1,体系中Fe3+浓度小于0.04g.L-1时,铟的沉淀率高达95%以上。溶液中Fe3+对铟的沉淀率有显著影响,当体系中Fe3+浓度为4.8g.L-1时,铟的沉淀率从96%降到34%,Fe2+,Cu2+,Zn2+等金属离子对铟的沉淀率没有影响,温度对铟的沉淀率也没有影响。并提出可能的反应机制:用三聚磷酸钠沉铟,首先析出含羟基的盐In2OHP3O1.09H2O,随后转变为InH3(PO4)2.4H2O。  相似文献   

18.
对含氟铍矿石冶炼过程中的氟分离工艺进行了研究。当矿石F/BeO=20%~40%时,采用沉淀分离法可以控制氢氧化铍的F/BeO=10%~12%。氢氧化铍经二次除铝、碱洗,可使产品中杂质Al2O3达到低于0 7%的要求。与矿石预处理工艺相比,沉淀法可使每吨氧化铍总成本降低约5000元左右。  相似文献   

19.
硫酸镍电解液净化除杂工艺研究   总被引:7,自引:3,他引:4  
对硫酸镍电解液的萃取净化除杂进行了系统的研究。实验采用M5640对铜离子进行除杂,实验条件为:pH值为3.0,相比为1∶1,萃取剂体积浓度为15%,振荡时间5min,在此实验条件下铜离子的萃取率大于99.83%,其含量小于0.1mg·mL-1,已达到5N镍电解液标准。去除铜离子之后,采用P507对电解液进行除杂,在实验条件pH为4.0,相比为1∶1,萃取剂体积浓度为15%,振荡时间5min下,二价铁离子、锌离子、铅离子的萃取率分别为:99.93%,99.75%,84.01%,其含量分别为:0.10,0.21,0.30mg·mL-1,已达到5N镍电解液标准。在此之后再采用P507对电解液中钴离子进行去除,实验条件为:用氢氧化钠溶液均相制皂75%,提高待萃液当中钴离子的含量至4.19g.L-1,即Co/Ni为1/10。实验采取四级萃取,控制水相pH值在4~5之间。钴离子萃取率为74.92%,含量为14.88mg·mL-1,已达到5N镍电解液标准。  相似文献   

20.
从湿法炼锌除钴渣的浸出液中分离钴的研究   总被引:1,自引:1,他引:1  
从理论上分析了用氧化剂将湿法炼锌除钴渣浸出溶液中的Co(Ⅱ)氧化成Co(Ⅲ),使钴以Co(OH)3的形式沉淀出的可能性,考察了温度、pH、凝聚剂对钴氧化沉淀的影响,初步确定出溶液中钴氧化沉淀的较优条件,并对沉淀的颗粒进行了X 射线衍射分析,拍摄了颗粒的SEM照片。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号