首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
目的检测对STAT3信号通路有调节作用的新基因SIPAR(STAT3 interacting protein as a represor)在小鼠胚胎发育过程中不同阶段的表达.方法采用地高辛标记探针的整体胚胎原位杂交方法.结果 SIPAR在dpc9.5的小鼠胚胎眼泡和听泡中有明显的表达,在dpc9.5~12.5的小鼠胚胎脊柱神经和脑部中枢神经都有表达,在dpc12.5小鼠胚胎脑、眼泡和脊柱中表达增强.结论 SIPAR主要集中表达在小鼠胚胎的神经系统,SIPAR可能与神经系统发育相关.  相似文献   

3.
Transforming growth factor-beta (Tgfbeta) is essential for normal embryogenesis. The cardiac phenotypes obtained after knockout of each of the three mammalian isoforms suggest different roles during morphogenesis. We studied cardiovascular expression of Tgfbeta1-3 in parallel tissue sections of normal mouse embryos from 9.5 to 15.5 days post coitum (dpc) by using radioactive in situ hybridisation. The Tgfbeta isoforms are differentially expressed in unique and in overlapping patterns during cardiovascular development. In the vessels, Tgfbeta1 is found in the intima, whereas Tgfbeta2 and -beta3 are mainly present in the media and adventitia of the great arteries. Tgfbeta1 is present in the endocardium at all stages examined. The Tgfbeta2 signal in the endocardium of the atrioventricular canal and outflow tract (9.5 dpc) shifts during epithelial-mesenchymal transformation toward the mesenchymal cushions (10.5-11.5 dpc) after which it exhibits a marked spatiotemporal expression pattern as the cushion differentiation progresses (11.5-15.5 dpc). The myocardium underlying the endocardial cushions and the atrial muscular septum are intensely positive for Tgfbeta2 at early stages (9.5-11.5 dpc) and expression decreases at 12.5 days. In contrast to earlier reports, we find marked overlap of Tgfbeta2 and -beta3 expression. Tgfbeta3 expression shows a characteristic distribution in the mesenchymal cushions, suggesting a role in cushion differentiation, possibly additional to Tgfbeta2. From 14.5 dpc onward, a strong Tgfbeta3 signal is found in the fibrous septum primum of the atrium and in the fibrous skeleton of the heart. Special attention was paid to the proepicardial organ and its derivatives. The proepicardial organ strongly expresses Tgfbeta2 as early as 9.5 days, and all isoforms are present in the epicardium from 12.5 dpc onward. The spatiotemporal cardiovascular expression of Tgfbeta1-3 supports both specific and complementary functions during cardiovascular development that might explain functional redundancy between the Tgfbeta-isoforms. The information provided favors novel roles of Tgfbeta1-3 in epicardial development, of Tgfbeta2 in myocardialisation, and of Tgfbeta3 in differentiation of the fibrous structures of the heart.  相似文献   

4.
Dipeptidyl-peptidase-like protein 6 (DPP6), a member of the dipeptidyl aminopeptidase family, plays distinct roles in brain development, but its expression in embryonic craniofacial development is unknown. The expression pattern of Dpp6 in the maxillofacial region during mouse embryonic craniofacial development was analyzed by whole-mount in situ hybridization on sections and by real-time PCR analysis. Dpp6 expression was detected during mouse embryonic craniofacial development in embryos 11-13.5 days post-coitum (dpc). Real-time PCR showed high Dpp6 expression present in 11.5-13.5 dpc, and this then decreased as development of maxillofacial region progressed. The expression pattern of Dpp6 suggests that Dpp6 may be involved in embryonic craniofacial development.  相似文献   

5.
The novel mammalian gene Crim1 encodes a transmembrane bound protein with similarity to the secreted bone morphogenetic protein (BMP) antagonists, vertebrate Chordin, and its Drosophila homologue short gastrulation. Crim1 is expressed in the neural tube in mouse in a restricted pattern, but its function in central nervous system development is largely unknown. We isolated the chicken Crim1 orthologue and analyzed its expression in the developing neural tube. Chicken CRIM1 shares strong homology to human/mouse CRIM1 and C. elegans CRIM1-like proteins. Crim1 is expressed in a similar but not identical pattern to that in the developing spinal cord of mouse, including the notochord, floor plate, motor neurons, and the roof plate. Unlike follistatin, a secreted inhibitor of BMPs, in ovo electroporation of CRIM1, as a full-length transmembrane bound or secreted ectodomain was not sufficient to disrupt early patterning of the neural tube. However, ectodomain CRIM1 overexpression leads to an approximate 50% decrease in populations of specific ventral neuronal populations, including ISL-1(+) motor neurons, CHX-10(+) V1, and EN-1(+) V2 interneurons.  相似文献   

6.
Bone morphogenetic proteins (BMP) exert its biological functions by interacting with membrane bound receptors. However, functions of BMPs are also regulated in the extracellular space by secreted antagonistic regulators, such as chordin and noggin. Although the deep involvement of BMP signaling in the development and functions of the trigeminal nuclei has been postulated, little information is available for its expression in the trigeminal nuclei. We, thus, investigated chordin and noggin expression in the adult rat trigeminal nuclei using immunohistochemistry. Chordin and noggin were intensely expressed throughout the trigeminal nuclei. In addition, interesting differences are observed between chordin expression and noggin expression. For example, chordin prefers dendritic expression than noggin, suggesting that chordin is involved in the regulation of dendritic morphology and synaptic homeostasis. Furthermore, chordin and noggin were differentially expressed in the neuropil of the trigeminal nuclei. Since BMP signaling is known to play a pivotal role to make precise neural network, theses differences might be important to keep precise interneuronal connections by regulating local BMP signaling intensity in each region. Interestingly, we also detected chordin and noggin expression in axons of the trigeminal nerves. These data indicate that chordin and noggin play pivotal roles also in the adult trigeminal system.  相似文献   

7.
8.
The Hoxc8 expression pattern was examined in mouse embryos 7.5-12.5 days postcoitum (dpc) using whole-mount in situ hybridization and RT-PCR. The expression of Hoxc8 started between 7.5 and 8.5 dpc. A strong expression was detected in the ectoderm and mesoderm at 8.5 dpc. At 9.5 dpc, a distinct anterior boundary of Hoxc8 expression was established at the 10th and 16th somites in the neural tube and the paraxial mesoderm, respectively. This staggered expression pattern was maintained throughout the later stages. By 12.5 dpc, the forward progression of the Hoxc8 expression pattern was observed and the stain was weakened. In the ectoderm-derived neural tube, strong Hoxc8 expression was observed in the ventral horn and later in the ventral and mediolateral region of the mantle layer, indicating a possible association with the onset and progression of neural differentiation. In the case of the mesoderm-derivative cells, strong Hoxc8 expression was detected in the sclerotome on the way to the notochord and neural tube and mesonephros, suggesting a role of Hoxc8 in the formation of the vertebrae and ribs and the possible involvement in the differentiation into the kidney.  相似文献   

9.
Bone morphogenetic proteins (BMPs) are multi‐functional cytokines, which belong to the transforming growth factor‐β (TGF‐β) family. In some cancer tissues, aberrant expression of various BMP signal components has been detected. Here, we describe the divergent roles of BMPs during the progression of cancer. BMPs exhibit various effects on both cancer cells and on tumor microenvironments. BMPs inhibit the proliferation of cancer cells, with some exceptions. BMPs also induce the differentiation of certain cancer stem cells, and attenuate their aggressiveness. In parallel, BMPs play a critical role in the regulation of tumor angiogenesis and the metastasis of cancer cells. Some mouse xenograft models have revealed that cancer metastases are prevented by the inhibition of BMP signaling. Together, these findings imply that BMPs function as both suppressors and promoters of tumors in a context dependent manner. The bi‐directional characteristics of BMPs in cancer are similar to those of TGF‐β, which was previously described as a molecular ‘Jekyll and Hyde.’  相似文献   

10.
BACKGROUND: Much is known about the three subfamilies of the TGFbeta superfamily in vertebrates-the TGFbetas, dpp/BMPs, and activins. Signalling in each subfamily is dependent on both shared and unique cell surface receptors and Smads. In invertebrates, mutants for BMP pathway components have been extensively characterized, but thus far, evidence for an activin- or TGFbeta-like pathway has been lacking, preventing the use of the extensive genetic tools available for studying several key issues of TGFbeta signalling. RESULTS: Here we report the identification of dSmad2, a new Drosophila Smad which is most related to the activin/TGFbeta-pathway Smads, Smad2 and Smad3. We show that dSmad2 induces activin responsive genes in Xenopus animal cap assays. dSMAD2 is phosphorylated by ATR-I and PUNT, but not by activated THICK VEINS, and translocates to the nucleus upon activation. Furthermore, we show that dSMAD2 complexes with MEDEA only in the presence of ATR-I and PUNT. dSmad2 is expressed in the imaginal disks and in the outer proliferation centre of the larval brain, suggesting that it may have important proliferative and patterning roles during Drosophila development. CONCLUSION: Our data provide evidence for the existence of an activin/TGFbeta pathway in Drosophila. We show that dSmad2 participates in this pathway, and that it functions with Atr-I and punt. We show that Medea also participates in this pathway, indicating the conservation of roles for Co-Smads in diverse phyla. Expression patterns of dSmad2 suggest that it functions in imaginal disks and in the brain, in tissues that undergo extensive patterning and proliferation.  相似文献   

11.
Twisted gastrulation (TWSG1), an extracellular regulator of bone morphogenetic protein (BMP) signaling, is critical for embryonic brain development. Mice deficient in TWSG1 have abnormal forebrain development manifesting as holoprosencephaly. The expression and potential roles of TWSG1 in postnatal brain development are less well understood. We show that Twsg1 is expressed in the adult mouse brain in the choroid plexus (CP), hippocampus, and other regions, with the strongest expression observed in CP. TWSG1 was also detected in a human fetal brain at mid-gestation, with highest levels in the epithelium of CP. Bmp1, Bmp2, Bmp4–Bmp7 as well as BmprIA and BmprII, but not BmprIB, were expressed in CP. BMP antagonists Chordin (Chrd) and Noggin were not detected in CP, however Chrd-like 1 and brain-specific Chrd-like (Brorin) were expressed. Electrophysiological study of synaptic plasticity revealed normal paired-pulse facilitation and long-term potentiation in the CA1 region of hippocampus in Twsg1−/− mice. Among the homozygous mutants that survive beyond the first 2 weeks, the prevalence of hydrocephalus was 4.3%, compared to 1.5% in a wild type colony (P=0.0133) between 3 and 10 weeks of life. We detected a high level of BMP signaling in CP in wild type adult mice that was 17-fold higher than in the hippocampus (P=0.005). In contrast, transforming growth factor beta (TGFβ) signaling was predominant in the hippocampus. Both BMP signaling and the expression of BMP downstream targets Msx1 and Msx2 were reduced in CP in Twsg1−/− mice. In summary, we show that Twsg1 is expressed in the adult mouse and human fetal CP. We also show that BMP is a branch of TGFβ superfamily that is dominant in CP. This presents an interesting avenue for future research in light of the novel roles of CP in neural progenitor differentiation and neuronal repair, especially since TWSG1 appears to be the main regulator of BMP present in CP.  相似文献   

12.
The antagonism between noggin and the bone morphogenetic proteins (BMPs) plays a key role during CNS morphogenesis and differentiation. Recent studies indicate that these secreted factors are also widely expressed in the postnatal and adult mammalian brain in areas characterized by different types of neural plasticity. In particular, significant levels of noggin and BMP expression have been described in the rodent olfactory system. In the mammalian forebrain, the olfactory bulb (OB) and associated subependymal layer (SEL) are documented as sites of adult neurogenesis. Here, using multiple approaches, including the analysis of noggin-LacZ heterozygous mice, we report the expression of noggin and two members of the BMP family, BMP4 and BMP7, in these regions of the adult mammalian forebrain. We observe that along the full extent of the SEL, from the lateral ventricle to the olfactory bulb, noggin and BMP4 and 7 are mainly associated with the astrocytic glial compartment. In the OB, BMP4 and 7 proteins remain primarily associated with the SEL while strong noggin expression was also found in cells located in different OB layers (i.e. granule, external plexiform, glomerular layers). Taken together our data lead us to hypothesize that within the SEL the antagonism between noggin and BMPs, both produced by the glial tubes, act through autocrine/paracrine inductive mechanisms to maintain a neurogenetic environment all the way from the lateral ventricle to the olfactory bulb. In the OB, their expression patterns suggest multiple regulatory roles on the unusual neural plasticity exhibited by this region.  相似文献   

13.
14.
Endogenous retinoic acid plays critical roles in normal vertebrate development, but can be teratogenic in excess. In mice, additional retinoic acid is administered by oral gavage or intraperitoneal injection. Here we evaluate a novel non-invasive system for administering retinoic acid via chocolate/sugar pellets. We use this delivery system to examine the role of retinoic acid in regulating the expression of the fibroblast growth factor Fgf3, and find that the timing of retinoic acid treatment is critical for its effects on Fgf3 expression. Administration of increasing amounts of retinoic acid at 7.75 dpc leads to dose-dependent downregulation of Fgf3 in the otocyst and changes in spatial expression in the hindbrain. Detailed analysis of the developing inner ear also reveals a lateralisation of Fgf3 expression with increasing retinoic acid dose that is dependent on timing of administration. We discuss how these data impact on current models of retinoic acid patterning of the otocyst.  相似文献   

15.
Cubilin and megalin are cell surface proteins that work cooperatively in many absorptive epithelia to mediate endocytosis of lipoproteins, vitamin carriers, and other proteins. Here we have investigated the coordinate expression of these receptors during mouse development. Our findings indicate that while there are sites where the receptors are co-expressed, there are other tissues where expression is not overlapping. Apical cubilin expression is pronounced in the extraembryonic visceral endoderm (VE) of 6-9.5 days postcoitum (dpc) embryos. By contrast, little megalin expression is evident in the VE at 6 dpc. However, megalin expression in the VE increases as development progresses (7.5-9.5 dpc), although it is not as uniformly distributed as cubilin. Punctate expression of megalin is also apparent in the region of the ectoplacental cone associated with decidual cells, whereas cubilin expression is not seen in association with the ectoplacenta. Strong expression of megalin is observed in the neural ectoderm, neural plate and neural tube (6-8.5 dpc), but cubilin expression is not apparent in any of these tissues. At 8.5 dpc, megalin is expressed in the developing endothelial cells of blood islands, whereas cubilin is absent from these cells. Finally, cubilin, but not megalin, is expressed by a subpopulation of cells dispersed within the 7.5 dpc embryonic endoderm and having a migratory morphology. In summary, the co-expression of cubilin and megalin in the VE is consistent with the two proteins functioning jointly in this tissue. However, the differential distribution pattern indicates that the proteins also function independent of one another. Furthermore, the finding of megalin expression in blood island endothelial cells and cubilin expression in embryonic endoderm highlight potential new developmental roles for these proteins.  相似文献   

16.
ZIC genes, vertebrate homologues of the Drosophila pair-rule gene odd-paired (opa), function in embryonic pattern formation, in the early stages of central nervous system neurogenesis and in cerebellar maturation. Mouse Zic genes are expressed in restricted, and in some cases overlapping, patterns during development, particularly in the central and peripheral nervous systems. We identified chick ZIC2 in a differential display analysis of the auditory system designed to find genes up-regulated after noise trauma. In this study, we examined the expression of chick ZIC1, ZIC2, and ZIC3 by in situ hybridization in normal inner ear development and in the tissues that influence its development, including the hindbrain, the neural crest, and the periotic mesenchyme. Between Hamburger and Hamilton stages 13 and 24, all three ZIC genes were found in the dorsal periotic mesenchyme adjacent to the developing inner ear. ZIC1 mRNA was expressed in the otocyst epithelium between stages 12 and 24, in some sensory tissue, as well as in a striped pattern in the floorplate of the hindbrain that appears to be complementary to that of Chordin, a gene known to regulate ZIC expression in frogs. Chick ZIC genes are also expressed in the neuroectoderm, paraxial mesenchyme, brain, spinal cord, neural crest, and/or the overlying ectoderm as well as the limb buds. In general, ZIC1 and ZIC2 expression patterns overlapped, although ZIC2 expression was less robust; ZIC3 expression was minimal. These observations suggest that ZIC genes, in addition to their known roles in brain development, may play an important role in the development of the chick inner ear.  相似文献   

17.
In vertebrates and invertebrates, BMP/Dpp (Bone Morphogenetic Protein/Decapentaplegic) signaling regulates the orchestrated processes of embryogenesis. Recent studies have revealed that BMP/Dpp signaling is controlled extracellularly as well as intracellularly. One extracellular regulatory molecule is the Chordin/Short gastrulation protein (Chordin/Sog), a secreted protein that acts as an antagonist to BMP/Dpp. Chordin/Sog contains four cysteine-rich (CR) domains that bind to and inactivate BMP/Dpp. In contrast, a positive regulator has been identified in Drosophila. Named crossveinless 2 (cv-2), this molecule contains five CR domains at the N-terminal half and a von Willebrand factor D domain at the C-terminal part. Genetic data suggest that Cv-2 potentiates Dpp signaling. We isolated chick and mouse CV-2 genes and found that CV-2 is secreted and enhances BMP signaling. Expression patterns were closely related to those of BMPs, supporting the likelihood of a tight link. Our data show for the first time that CV-2 is a conserved, positive regulator of BMP signaling and that CR domain proteins act as both positive and negative modulators of BMP signaling.  相似文献   

18.
目的研究C5aR1在新生小鼠脑内及体外培养神经干细胞内的表达规律,探索C5aR1对神经干细胞增殖调节的作用。方法以免疫组化方法检测在新生小鼠脑内及体外培养的神经干细胞内C5aR1的表达;培养C5aR基因敲除小鼠来源的神经干细胞,同时利用C5aR拮抗剂处理正常小鼠来源的神经干细胞,分别观察神经干细胞的增殖状态,分析C5aR1对神经干细胞增殖的调节作用。结果 1)在新生小鼠脑内,C5aR1主要表达于海马和室下区等神经干细胞分布区域;2)C5aR1与nestin共表达于体外培养的神经干细胞内;3)C5aR特异性拮抗肽下调体外培养的神经干细胞内nestin表达并抑制其增殖;C5aR1基因敲除,神经干细胞的成球能力明显降低。结论 C5aR1在脑内以及神经干细胞内均有表达,对神经干细胞的增殖具有促进作用,其具体机制还有待进一步的实验研究。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号