首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pb(In(1∕2)Nb(1∕2))O(3)-Pb(Mg(1∕3)Nb(2∕3))O(3)-PbTiO(3) (PIN-PMN-PT) crystals were studied as function of phase and orientation. The properties, including the Curie temperature T(C), ferroelectric-ferroelectric phase transition temperature T(R∕O-T), coercive field, and piezoelectric∕dielectric responses, were systematically investigated with respect to the composition of PIN-PMN-PT crystals. The Curie temperature T(C) was found to increase from 160 to 220 °C with ferroelectric-ferroelectric phase transition temperature T(R-T) and T(O-T) being in the range of 120-105 °C and105-50 °C, respectively. The piezoelectric activity of PIN-PMN-PT crystals was analyzed by Rayleigh approach. The ultrahigh piezoelectric response for domain engineered [001] (1600-2200 pC∕N) and [011] (830-1550 pC∕N) crystals was believed to be mainly from the intrinsic contribution, whereas the enhanced level of piezoelectric and dielectric losses at the compositions around morphotropic phase boundaries (MPBs) was attributed to the phase boundaries motion.  相似文献   

2.
Lin D  Zhang S  Li Z  Li F  Xu Z  Wada S  Luo J  Shrout TR 《Journal of applied physics》2011,110(8):84110-841106
The effect of domain size on the dielectric and piezoelectric properties of [111]-oriented tetragonal Pb(In(1∕2)Nb(1∕2))O(3)-Pb(Mg(1∕3)Nb(2∕3))O(3)-PbTiO(3) crystals was investigated. The dielectric permittivity (?(33?) (T)∕?(0)) and piezoelectric coefficient (d(33)) were found to be on the order of 13 800 and 1630 pC∕N, respectively, for samples with domain size of ~500?nm, a 3-fold increase to crystals with domain size of ~50?μm. Rayleigh analysis revealed that the extrinsic contribution to the piezoelectric response increased from ~8% to 30% with decreasing domain size, due to the increased domain wall density and associated irreversible domain wall motion. The enhanced properties were thought to relate to the fine domain structures, however, showing a poor electric field and temperature stabilities with domain size of 500?nm. Of particular significance is that samples with domain size being on the order of 5?μm exhibit field and temperature stabilities, with yet high piezoelectric properties, make it potential for transducer applications.  相似文献   

3.
We report on the successful preparation and characterization of fluorescent magnetic core∕shell Fe(3)O(4)∕ZnSe nanoparticles (NPs) with a spherical shape by organometallic synthesis. The 7 nm core∕3 nm shell NPs show good magnetic and photoluminescence (PL) responses. The observed PL emission∕excitation spectra are shifted to shorter wavelengths, compared to a reference ZnSe NP sample. A dramatic reduction of PL quantum yield is also observed. The temperature dependence of the magnetization for the core∕shell NPs shows the characteristic features of two coexisting and interacting magnetic (Fe(3)O(4)) and nonmagnetic (ZnSe) phases. Compared to a reference Fe(3)O(4) NP sample, the room-temperature Néel relaxation time in core∕shell NPs is three times longer.  相似文献   

4.
The piezoelectric properties of Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1∕3)Nb(2∕3))O(3)-PbTiO(3) crystals with various engineered domain configurations were investigated. Rhombohedral and monoclinic∕orthorhombic crystals poled along their crystallographic [011] directions were found to possess macroscopic mm2 symmetry, with "2R" and "1O" domain, respectively. Crystals with the "2R" domain configuration were found to exhibit high extensional piezoelectric coefficients d(33) (~1300 pC∕N) and d(32) (~-1680 pC∕N), while crystals with the "1O" configuration possessed high shear coefficients d(15) (~3500 pC∕N) and d(24) (~2070 pC∕N), with relatively low extensional piezoelectric coefficients d(33) (~340 pC∕N) and d(32) (~-260 pC∕N). The observed results were explained by "polarization rotation" model, as related to their respective domain configurations.  相似文献   

5.
The dielectric properties and electrical conductivity of Al∕SiO(2)∕p-Si (MIS) Schottky diodes (SDs) in the frequency range of 10 kHz to 10 MHz and the gate voltage range of -2 to 6 V have been investigated in detail using experimental C-V and G∕w-V measurements. Experimental results indicated that the voltage dependence of the real part of the dielectric constant (?') and loss tangent (tan δ) characteristics have a peak at each frequency. The values of ?' increase with decreasing frequency and tend to be frequency independent in the negative voltage region. However, the values of the dielectric loss (?″) increase with decreasing frequency at each voltage. In contrast, ?' and ?″ are almost found to decrease, and the ac electrical conductivity (σ(ac)) and the real part of the electric modulus (M') increase, with increasing frequency. In addition, the imaginary part of the electric modulus (M″) showed a peak that shifts to a higher frequency with increasing applied voltage. It can be concluded that interfacial polarization can more easily occur at low frequencies, and consequently the majority of interface states at the Si-SiO(2) interface contribute to the deviation of the dielectric properties of Al∕SiO(2)∕p-Si (MIS) SDs.  相似文献   

6.
Ming C  An L  Ren X 《Applied optics》2012,51(16):3190-3193
Yb3+∕Er3+∕Tm3+ tri-doped phosphate glass ceramics were prepared by a high-temperature melting method and thermal treatment technology. Upconversion (UC) emissions of the Yb3+∕Er3+∕Tm3+ tri-doped phosphate glass ceramic samples were studied under 975 nm excitation. The glass ceramic samples can simultaneously generate blue, green, and red emissions. The multicolor emission obtained was tuned to white light by adjusting the Er3+ ion concentration. The emission color of the sample doped with 8 mol.% Er3+ ion is white to the naked eye, and CIE coordinates (x=0.316, y=0.354) of the sample are close to the standard equal energy white-light illumination (x=0.333, y=0.333). The material will be useful in developing the white-light-emitting diode.  相似文献   

7.
This work aimed to produce poly(acrylonitrile-co-itaconic acid) (P(AN-co-IA)) nanocomposites with poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3-methoxythiophene) (PMOT). An anionic surfactant sodium dodecyl benzene sulphonate was used in emulsion polymerization for nanocomposite production. Incorporations of PEDOT and PMOT on the nanoparticles were characterized by scanning electron microscopy (SEM), atomic force microscopy, Fourier transform infrared-attenuated total reflectance spectroscopy and ultra-violet spectroscopy. These nanoparticles were blended with PAN and the blends were electrospun to produce P(AN-co-IA)–polythiophene-derivative-based nanofibres, and the obtained nanofibres were characterized by SEM and energy dispersive spectroscopy. In addition, electrochemical impedance studies conducted on nanofibres showed that PEDOT and PMOT in matrix polymer P(AN-co-IA) exhibited capacitive behaviour comparable to that of ITO–PET. Their capacitive behaviour changed with the amount of electroactive polymer.  相似文献   

8.
The LiZr2(AsO4)3 arsenate and LiZr2(AsO4) x (PO4)3 ? x solid solutions have been prepared through precipitation followed by heat treatment, and characterized by X-ray diffraction, X-ray structure analysis, IR spectroscopy, and impedance spectroscopy. We have established conditions for the crystallization of the arsenate and a continuous series of arsenate phosphate solid solutions (0 ≤ x ≤ 3), which have been obtained as two polymorphs: monoclinic and hexagonal. Using the Rietveld method, we have refined the crystal structures of the polymorphs of LiZr2(AsO4)3 (sp. gr. P21/n, a = 9.1064(2), b = 9.1906(2), c = 12.7269(3) Å, β = 90.844(2)°, V =1065.03(5) Å3, Z = 4; sp. gr. R $\bar 3$ c, a = 9.1600(4), c = 22.9059(13) Å, V = 1664.44(14) Å, Z = 6) and LiZr2(AsO4)1.5(PO4)1.5. Their structural frameworks are built up of AsO4 tetrahedra—or (As,P)O4 tetrahedra occupied by arsenic and phosphorus atoms at random—and ZrO6 octahedra, with the lithium atoms in between. The ionic conductivity of the materials has been measured. The cation conductivity of monoclinic LiZr2(AsO4) x (PO4)3 ? x with 0 ≤ x ≤ 1 has been shown to exceed the conductivity of lithium zirconium phosphate.  相似文献   

9.
One-dimensional Eu(3+) doped gadolinium oxysulfide (Gd(2)O(2)S:Eu(3+)) nanotubes/nanorods have been synthesized via precursors of Gd(OH)(3) nanostructures using a hydrothermal technique. The blue-shifts in the optical spectra for the Gd(2)O(2)S:Eu(3+) system corresponding to the fundamental absorption and Eu(3+)-X(2-) ligand (X = O/S) charge transfer bands (CTBs) are significant (~0.22-0.36?eV) with respect to the bulk counterpart. The nanotubes are good candidates for investigating the size-induced electrical and optical properties of functional oxysulfides. In order to identify the origin and nature of the electronic transitions observed in the visible region, optical and photo-induced impedance measurements have been extended to the nanotubes in this report.  相似文献   

10.
1. IntroductionRecelltly new intermetallic compounds NdZ(Fe,Ti)lo and RZ(Feo.91Vo.og)19 (R=Y, Nd, Sin, Gd) werediscovered by Collocott et al.II] and Shcherbakovaat al.IZ], respectively. The crystal structure of thesenew phases has been identified to be Nd3(Fe, Ti)29type structure using X-ray diffraction by Li et al.I3].Among them, the Sin3(Fe,Ti)29N. compound exhibitsstrong uniaxial anisotropy' and its saturation magnetization is very close to that of S.,Fe,,N;'] compound.The hydr…  相似文献   

11.
Actinide(VII) salts Rb3[NpO4(OH)2]·3H2O (I) and Rb3[PuO4(OH)2]·3H2O (II) were prepared as single crystals and examined by X-ray diffraction. The compounds are isostructural and crystallize in the monoclinic system, space group C2/c, Z = 4; unit cell parameters: a = 12.1544(3), b = 10.9942(2), c = 7.789(2) ?, ?? = 91.0930(11)° for I and a = 12.1254(3), b = 10.9506(2), c = 7.7699(2) ?, ?? = 90.8253(12)° for II. The main structural elements of I and II are centrosymmetrical anions [AnO4(OH)2]3? forming together with water molecules, owing to strong hydrogen bonding, chains oriented along [101]. In [AnO4(OH)2]3? anions, the central An(VII) atom has a tetragonal-bipyramidal oxygen surrounding. The An-O(OH) interatomic distances decrease in going from I to II owing to actinide contraction by a factor of ??2 more strongly than the An-O bond lengths in the equatorial planes of the bipyramids. The previously studied structure of Cs3[NpO4(OH)2]·3H2O (III) was refined.  相似文献   

12.
《Composites Part A》1999,30(2):163-167
Nanocrystalline calcium and lanthanum modified lead titanate (PCLT) powder prepared by a sol–gel process was incorporated into a polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] copolymer matrix to form PCLT–P(VDF-TrFE) nanocomposite thin films with 0.11 volume fraction of ceramic. The relative permittivity and pyroelectric coefficient of the P(VDF-TrFE) copolymer and nanocomposite films were measured as functions of the poling electric field. After poling under the same conditions, the nanocomposite film was found to have a higher pyroelectric coefficient (by ∼35%) and figures of merit than those of the P(VDF-TrFE) film of a similar thickness.  相似文献   

13.
When-Cu2(OH)3Cl is decomposed in air or nitrogen flow, different amounts of cuprous oxide are obtained as final product depending on both the heating rate and the ambient atmospheres. However, the temperature of formation of cuprous oxide only appears to depend on the partial pressure of oxygen. When thermal decomposition is carried out under dynamic vacuum in the X-ray high-temperature diffraction chamber, using a tantalum strip as the heating element, copper is obtained as final product at a comparatively low temperature.  相似文献   

14.
The compound Cs3[UO2(CH3COO)3]2(NCS)·H2O (I) was synthesized and studied by IR spectroscopy and single crystal X-ray diffraction. Compound I crystallizes in the monoclinic system with the following unit cell parameters: a = 7.8286(9), b = 19.892(2), c = 20.050(2) Å, β = 94.527(2)°, space group P21/c, Z = 4, R = 0.0387. The uranium-containing structural units in crystals of I are mononuclear complexes [UO2(CH3COO)3]? belonging to crystal-chemical group AB 3 01 (A = UO 2 2+ , B01 = CH3COO?) of uranyl complexes.  相似文献   

15.
16.
《Materials Letters》2002,52(1-2):120-125
The structure and properties of La0.7Pb0.3MnO3−δ (LPMO) bulk and films, which are deposited onto (001), (110) and (111) LaAlO3 (LAO) substrates using the direct current magnetron sputtering technique, are obtained. For bulk of LPMO, Tp is almost equal to Tc (252 K) and its R(T) curve has a bump in low temperature region. For films, the colossal magnetoresistance (CMR) of 28% at 155 K and in 0.5 T was observed on (001) oriented substrate under 9 Pa sputtering gas pressure and substrate temperature of 790 °C. The transport properties of the deposited films are slightly lower than that of the bulk.  相似文献   

17.
18.
Zhang G  Lu X  Zhang T  Qu J  Wang W  Li X  Yu S 《Nanotechnology》2006,17(16):4252-4256
In order to explore the fundamental properties of one-dimensional nanostructured high-temperature superconductors and enhance their promising applications, a universal and general method for the synthesis of high-quality YBa(2)Cu(3)O(7-δ) (YBCO) nanowire arrays is developed, which involves the combination of a novel sol-gel process to lower the crystallization temperature of YBCO, and porous anodic alumina (PAA) as an effective morphology-directing hard template. Field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the as-prepared YBCO nanowires have average diameters of about 50?nm and lengths up to several microns. The structures of the samples were analysed by x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDX) and inductively coupled plasma (ICP) analysis, which indicate that the nanowires are well crystallized with orthorhombic YBCO-123 structure. The magnetization measurement under zero-field-cooled (ZFC) mode indicates that the superconducting transition temperature (T(c)) of the nanowires is about 92?K, which is in agreement with that of a bulk YBCO sample.  相似文献   

19.
Lead-free ceramics based on bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT)–barium titanate (BaTiO3,BT) have been prepared by solid state reaction process. The (1?x)BNT–(x)BT (x = 0.01,0.03,0.05,0.07) ceramics were sintered at 1,150 °C for 4 h in air, show a pure perovskite structure. X-ray diffraction analysis indicates that a solid solution is formed in (1?x)BNT–(x)BT ceramics with presence of a morphotropic phase boundary (MPB) between rhombohedral and tetragonal at x = 0.07. Raman spectroscopy shows the splitting of (TO3) mode at x = 0.07 confirming the presence of MPB region. The temperature dependence dielectric study shows a diffuse phase transition with gradual decrease in phase transition temperature (Tm). The dielectric constant and diffusivity increases with increase in BT content and is maximum at the MPB region. With the increase in BT content the maximum breakdown field increases, accordingly the coercive field (Ec) and remnant polarization (Pr) increases. The piezoelectric constant of (1 ? x)BNT–(x)BT ceramics increases with increase in BT content and maximum at x = 0.07, which is the MPB region. The BNT–BT system is expected to be a new and promising candidate for lead-free dielectric and piezoelectric material.  相似文献   

20.
Zhang J  Liu X  Wang L  Yang T  Guo X  Wu S  Wang S  Zhang S 《Nanotechnology》2011,22(18):185501
α-Fe(2)O(3)@ZnO core-shell nanospindles were synthesized via a two-step hydrothermal approach, and characterized by means of SEM/TEM/XRD/XPS. The ZnO shell coated on the nanospindles has a thickness of 10-15 nm. Considering that both α-Fe(2)O(3) and ZnO are good sensing materials, we have investigated the gas sensing performances of the core-shell nanocomposite using ethanol as the main probe gas. It is interesting to find that the gas sensor properties of the core-shell nanospindles are significantly enhanced compared with pristine α-Fe(2)O(3). The enhanced sensor properties are attributed to the unique core-shell nanostructure. The detailed sensing mechanism is discussed with respect to the energy band structure and the electron depletion theory. The core-shell nanostructure reported in this work provides a new path to fabricate highly sensitive materials for gas sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号