首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, pilot scale experiments were carried out to examine membrane fouling occurring in membrane bioreactors (MBR) with or without pre-treatment (coagulation/sedimentation). Especially, the influence of suspension viscosity and dissolved organic matter (DOM) on membrane fouling was investigated. The pre-coagulation/sedimentation process improved the performance of a MBR in terms of membrane permeability by controlling irreversible fouling and formation of thick cake layer. The upper limit of MLSS concentration for an efficient operation in MBR without pre-treatment was suggested to be around 10 g/L based on the measurement of suspension viscosity. In this study, it was difficult to directly relate membrane fouling to DOM detected in the membrane chamber. A series of laboratory scale dead-end filtration experiments was carried out to investigate which fractions in biomass suspension would be the most influential in the deterioration of membrane permeability. Based on the dead-end tests, it was shown that the deterioration of membrane permeability was mainly caused by the colloidal particle fraction in the biomass suspension.  相似文献   

2.
Influence of EPS on fouling of intermittent aeration MBR reactor (denitrification MBR) was investigated changing intermittent aeration cycle (10 minute-cycle and 120 minute-cycle) in laboratory-scale reactors using synthetic wastewater. EPS were extracted from bacterial cells using cation resin method and molecular weight fractioning of EPS was conducted using gel chromatography. In both of the reactors, nitrogen removal rate was almost 100% after 50th day although DO concentration was not very high during the aerated phase because of accumulation of nitrifying bacteria in the reactors. In the 120 minutes-cycle reactor, trans-membrane pressure increased more rapidly than in the 10 minutes-cycle reactor. The reason might be that EPS of more than 1000 kDa, which are the main fouling substances, are produced more rapidly in the 120 minute-cycle condition. It was also found that three peaks at around 100 kDa, 500 kDa and 2000 kDa are prominent in EPS in intermittent-aeration MBR irrespective of cycle and higher molecular weight EPS are decomposed to smaller molecular weight EPS on membrane surface.  相似文献   

3.
In a membrane bioreactor (MBR) process containing a variety of bacteria, the bacterial adhesion to the membrane surface, prior to cake formation, causes an increased filtration resistance. In this study, Pseudomonas fluorescens, commonly found in the municipal wastewater treatment process with activated sludge, was used to show the effects of extracellular polymeric substances (EPS) on bacterial adhesion to the membrane surface in the MBR. Of the various roles of EPS in promoting membrane fouling, the adhesion of bacteria to the membrane surface was calculated using the specific cake resistance (alpha, m/kg). Although the amount of EPS binding with bacteria was increased by the addition of Ca2+, there was no significant effect on the bacterial growth. The results of the particle size distribution showed that the addition of Ca2+ increased flocculation, allowing the formation of a complex with the bacteria and EPS. In order to identify the effects of the addition of Ca2+ on the hydrophobicity, the contact angle was also measured. The result showed that the addition of Ca2+ showed no significant differences in the hydrophobicity, even though there was an increase in flocculation. With the bacteria containing a higher EPS concentration, a higher specific cake resistance was observed. From the results of the adhesion experiment, which was conducted with various EPS levels, displayed as the COD and TOC concentration, an increased EPS concentration was shown to promote bacterial adhesion to the membrane surface.  相似文献   

4.
A submerged flat metal MBR (membrane bioreactor) was used to treat synthetic domestic sewage in this study. The experiment was continued for 270 days and ran under two modes as AMBR (aerobic membrane bioreactor) and A/O-MBR (anoxic/aerobic membrane bioreactor) at a permeate flux of 0.4-1 m3/(m2 d). PVA (polyvinyl alcohol) gel beads were added to the aeration tank with a volume ratio of 10% at the end of the A/O-MBR mode. The mean COD and TN removal efficiencies achieved 96.69 and 32.12% under the AMBR mode, and those were 92.17 and 72.44% under the A/O-MBR mode, respectively. SND (simultaneous nitrification and denitrification) occurred at high MLSS (mixed liquor suspended solids) concentration. The metal membranes reduced effluent COD during filtration. The system ran stably for 115 days at a permeate flux of 0.8-1 m3/(m2 d) without changing membranes under the AMBR mode, but the membrane filterability decreased gradually under high MLSS or A/O-MBR mode, and the addition of PVA worsened the membrane filterability on the contrary. PSD (particle size distribution) and sludge fractions had evident influence on membrane fouling. The main fouling mechanism was cake formation under the AMBR mode, and that was pore blocking under the A/O-MBR mode.  相似文献   

5.
The objective of this study is to investigate solids concentration and extracellular polymeric substance (EPS) effects on the membrane fouling in the submerged membrane bioreactor. The relationship between the solids retention time (SRT) and the amount of EPS is observed in three lab-scale MBRs. Additionally, the EPS effect on membrane fouling is quantified by calculating the specific cake resistance (alpha) using an unstirred batch cell test. By observing the sludge over a long period under various SRT scenarios, a wide range of EPS and membrane fouling data is obtained. These observations provide sufficient evidence of the functional relationship between SRT, EPS and alpha. As SRT decreases, the amount of EPS bound in sludge floc becomes higher in the high MLSS condition (> 5,000 mg/L). The amount of EPS in the sludge floc has positive influence on alpha. A sigmoid trend between EPS and alpha is observed and the functional relationship obtained by dimensional analysis is consistent with the experimental results.  相似文献   

6.
Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.  相似文献   

7.
Oxygen transfer in biological wastewater treatment processes with high sludge concentration, such as membrane bioreactor (MBR), is an important issue. The variation of alpha-factor versus mixed liquor suspended solids (MLSS) concentration was investigated in a full scale MBR plant under process conditions, using mass balances. Exhaustive data from the Supervisory Control And Data Acquisition (SCADA) and from additional online sensors (COD, DO, MLSS) were used to calculate the daily oxygen consumption (OC) using a non-steady state mass balance for COD and total N on a 24-h basis. To close the oxygen balance, OC has to match the total oxygen transfer rate (OTRtot) of the system, which is provided by fine bubble (FB) diffusers in the aeration tank and coarse bubbles (CB) in separate membrane tanks. First assessing OTR(CB) then closing the balance OC = OTRtot allowed to calculate OTR(FB) and to fit an exponential relationship between OTR(FB) and MLSS. A comparison of the alpha-factor obtained by this balance method and by direct measurements with the off-gas method on the same plant is presented and discussed.  相似文献   

8.
Application of photosynthetic process could be highly efficient and surpass anaerobic treatment in releasing less greenhouse gas and odor while the biomass produced can be utilized. The combination of photosynthetic process with membrane separation is possibly effective for water reclamation and biomass production. In this study, cultivation of mixed culture photosynthetic bacteria from food processing wastewater was investigated in a sequencing batch reactor (SBR) and a membrane bioreactor (MBR) supplied with infrared light. Both photo-bioreactors were operated at a hydraulic retention time (HRT) of 10 days. Higher MLSS concentration achieved in the MBR through complete retention of biomass resulted in a slightly improved performance. When the system was operated with MLSS controlled by occasional sludge withdrawal, total biomass production of MBR and SBR photo-bioreactor was almost equal. However, 64.5% of total biomass production was washed out with the effluent in SBR system. Consequently, the higher biomass could be recovered for utilization in MBR.  相似文献   

9.
The Self-Forming Dynamic Membrane Coupled Bioreactor (SFDMBR), which uses coarse pore-sized material to separate solid and liquid in bioreactors, has some advantages compared with MBR using micro-/ultra-filtration membranes, for example, low module cost and high flux. The cake layer and gel layer formed on the surface and in the pores of the material during filtration played an important role, called self-forming dynamic membrane (DM), which mainly consisted of activated sludge. In this study, the function of DM in pollutant removal was investigated. It was found that DM could remove some organic matter (12.6 mg L(-1) on average) and total nitrogen (3.01 mg L(-1) on average) in the supernatant. Colloids and organic nitrogen were partly removed by DM while DOC, ammonia nitrogen and nitrate nitrogen removal by DM varied from negative to positive, which resulted from the combination of various biological activities, e.g. nitrification, biological utilization and so on. DO concentration in DM decreased with the depth and reached zero at about 1.5-2.5 mm depth. The organic degradation activity and nitrification activity of the biomass suspended in the bioreactor were higher than those of the biomass in the cake layer, which might be caused by the low DO concentration and low organic pollutant content in DM.  相似文献   

10.
A new sludge treatment process combining a high MLSS membrane bioreactor with sludge pretreatment techniques was studied in pilot-scale experiments. The membrane bioreactor (MBR) was adopted for high efficiency aerobic digestion. The combination of alkaline-ozone treatment of the mixed liquor in the MBR reactor accelerated the biodegradation process by enhancing biodegradability of the sludge. The hydraulic retention time (HRT) of the reactor was set as 3.1 days and the DO level was 1 mg/L on average. After 5 months of operation, the accumulative total solids reduction was more than 70%. Removal efficiency of volatile solids and non-volatile solids were 76% and 54%, respectively. It was found that a considerable portion of the non-volatile solids was dissolved into ions and then flushed out with the effluent. Also, about 41% and 28% of T-N and T-P in the raw sludge were removed although no biological nutrient removal process was adopted. The experiment was run smoothly without significant membrane fouling, even at the relatively high levels of MLSS concentration (11,000-25,000 mg/L). It is concluded that the newly proposed process can significantly increase the sludge reduction efficiency with much shorter retention times.  相似文献   

11.
Batch filtration tests were conducted to compare the characteristics of membrane biofouling with regard to nitrification and denitrification. A Modified Fouling Index (MFI) was obtained using a stirred cell tester. The denitrification assays showed higher membrane fouling rates than the nitrification assays. The fouling became worse, not only due to pore blocking resistance, but also from cake layer resistance after denitrification. The Extracellular Polymeric Substances (EPS) concentration and relative hydrophobicity were decreased after denitrification, resulting in floc deterioration. The floc deterioration was assumed to have increased the cake layer resistance in the filtration test. The protein Soluble Microbial Products (SMP) concentration, portion of high molecular weight in carbohydrate SMP and relative hydrophobicity were increased after denitrification, which was assumed to cause membrane pore blocking. The changes in the EPS and SMP characteristics were the main fouling parameters in denitrification.  相似文献   

12.
A new membrane bioreactor with gravity drain for municipal wastewater treatment was tested and its operational factors were investigated in this study. These factors include pressure head, MLSS, aeration intensity (an air flow rate per unit floor area) and temperature. Results of batch experiments showed that a critical pressure head of the MBR was 0.85-1.5 m-H2O. At a pressure head of 0.85 m-H2O, statistical analysis of batch experiments showed that aeration intensity significantly affected membrane flux, and the MLSS had no impact on membrane flux under a temperature of 22.0 +/- 1.0 degrees C. Results of the long-term continuous experiment showed that temperature significantly affected membrane flux. The impact of temperature on membrane flux in this case was about 4-10 times of that analyzed by using a classical cake layer model. During this experiment, the average removal efficiencies of COD, BOD5 and NH4+-N were over 85%, 97% and 94%, respectively.  相似文献   

13.
The bacterial community involved in removing nitrogen from sewage and their preferred DO environment within an anoxic/oxic membrane bioreactor (A/O MBR) was investigated. A continuously operated laboratory-scale A/O MBR was maintained for 360 d. At a sludge age of 150 d and a C/N ratio of 3.5, the system was capable of removing 88% of the influent nitrogen from raw wastewater through typical nitrogen removal transformations (i.e. aerobic ammonia oxidation and anoxic nitrate reduction). Characterization of the A/O MBR bacterial community was carried out using fluorescence in situ hybridization (FISH) techniques. FISH results further showed that Nitrosospira spp. and Nitrospira spp. were the predominant groups of ammonia and nitrite oxidizing group, respectively. They constituted up to 11% and 6% of eubacteria at DO below 0.05 mg/l (low DO), respectively, and about 14% and 9% of eubacteria at DO between 2-5 mg/l (sufficient DO), respectively, indicating preference of nitrifiers for a higher DO environment. Generally low counts of the genus Paracoccus were detected while negative results were observed for Paracoccus denitrificans, Alcaligenes spp, and Pseudomonas stutzeri under the low and sufficient DO environments. The overall results indicate that Nitrosospira spp., Nitrospira spp. and members of Paracoccus spp. can be metabolically functional in nitrogen removal in the laboratory-scale A/O MBR system.  相似文献   

14.
Parallel experimental tests to measure mixed liquor filterability for submerged membrane bioreactors were conducted over a six month period using three ZW-500 pilot plants and a ZW-10 lab-scale filterability apparatus. Non-air sparged conditions during the tests yielded operation behaviour that was equivalent to dead-end filtration. The fouling resistance increased linearly with the intercepted mass until a critical point was reached at which point significant cake compression was induced and the resistance began to increase exponentially. Although the point of cake compression appears to be dependent on the membrane module design, similar resistance per unit solid mass intercepted per unit area (R(mass)) values were observed when the same mixed liquor was filtered. Coupled with the established correlation between the R(mass) and the critical flux, it is suggested that the filterability test results from a side-stream, lab-scale module may be used to predict fouling potential in a full scale MBR wastewater treatment system without interrupting the full-scale MBR operation.  相似文献   

15.
The rheological characterization is of crucial importance in sludge management both for biomass dewatering and stabilization purposes and for the definition of design parameters for sludge handling operations. The sludge retention time (SRT) has a significant influence on biomass properties in biological wastewater treatment systems and in particular in membrane bioreactors (MBR). The aim of this work is to compare the rheological behaviour of the biomass in a membrane bioreactor operated under different SRT. A bench scale MBR was operated for four years under the same conditions except for the SRT, that ranged from 20 days to complete sludge retention. The rheological properties were measured over time and the apparent viscosity was correlated with the concentration of solid material under equilibrium conditions. The three models most commonly adopted for rheological simulations were evaluated and compared in terms of their parameters. Steady state average values of these parameters were related to the equilibrium biomass concentration (MLSS). The models were tested to select the one better fitting the experimental data in terms of Mean Root Square Error (MRSE). The relationship between the apparent viscosity and the shear rate, as a function of solid concentration, was determined and proposed.  相似文献   

16.
EPS are supposed to be among the causes of membrane fouling in membrane bioreactors (MBR). In this work they are measured as total proteins and total polysaccharides. Theoretical and empirical considerations of biomass membrane filtration lead to the conclusion that EPS in the water phase is decisive for the filterability of activated sludge. In this study therefore different ways of separating the water phase from the biomass are investigated, where a simple filtration over a paper filter turned out to be sufficient. Subsequently, a simple batch test set up was used to investigate the influence of substrate conditions on the amount of EPS in the water phase. Dilution of the biomass does not result in changes. Dilution together with substrate addition leads to an increase both in proteins and polysaccharides. Replacement of the water phase leads to no significant changes in protein concentration, but polysaccharide concentration may vary considerably. This phenomenon is more pronounced after replacement of the water phase and substrate addition.  相似文献   

17.
Experiments have been carried out to get an understanding of the effect of DO, C/N ratio and pH on the performance of a bench scale membrane bioreactor (MBR) in simultaneous nitrification and denitrification. It was found that under the conditions of MLSS in the range of 8000-9000 mg/L and temperature of water in the MBR of 24 degrees C, influent COD and NH3-N in the range of 523-700 mg/L and 17.24-24 mg/L respectively, the removals of COD, NH3-N and TN were 98%, 99% and 60%; 96.5%, 0,98% and 75%; 96%, 95% and 92%; 90%,70% and 60% respectively at DO of 6, 3, 1 and 0.5 mg/L. It was also found that the changes in C/N ratio and pH in a certain range have a slight effect on COD removal but have significant influence on the removal of NH3-N and TN. The results showed that only under the conditions that each ecological factor was maintained relatively steadily, simultaneous nitrification and de-nitrification proceeded smoothly. It was found that when C/N ratio was 30, the influent pH 7.2, the temperature of water in MBR 24 degrees C and DO 1 mg/L, as optimum conditions, the removals of COD, NH3-N and TN were 96%, 95% and 92% respectively. In addition, mechanism research on simultaneous nitrification and de-nitrification in MBR has been conducted as well.  相似文献   

18.
Two-stage membrane bioreactor (MBR) system was applied to the treatment of landfill leachate from a solid waste disposal site in Thailand. The first stage anoxic reactor was equipped with an inclined tube module for sludge separation. It was followed by an aerobic stage with a hollow fiber membrane module for solid liquid separation. Mixed liquor sludge from the aerobic reactor was re-circulated back to anoxic reactor in order to maintain constant mixed liquor suspended solids (MLSS) concentration in the aerobic reactor. The removal of micro-pollutants from landfill leachate along the treatment period of 300 days was monitored. The results indicated that two-stage MBRs could remove biochemical oxygen demand (BOD), chemical oxygen demand (COD) and NH(4)(+) by 97, 87 and 91% at steady operating condition. Meanwhile organic micro-pollutant removals were 50-76%. The removal efficiencies varied according to the hydrophobic characteristic of compounds but they were improved during long-term MBR operation without sludge discharge.  相似文献   

19.
A study has been carried out to define the effect of drastic temperature changes on the performance of lab-scale hollow-fibre MBR in treating municipal wastewater at a flux of 10 L m(-2) h(-1) (LMH). The objectives of the study were to estimate the activated sludge properties, the removal efficiencies of COD and NH(3)-N and the membrane fouling tendency under critical conditions of drastic temperature changes (23, 33, 42 & 33 °C) and MLSS concentration ranged between 6,382 and 8,680 mg/L. The study exhibited that the biomass reduction, the low sludge settleability and the supernatant turbidity were results of temperature increase. The temperature increase led to increase in SMP carbohydrate and protein, and to decrease in EPS carbohydrate and protein. The BRE of COD dropped from 80% at 23 °C to 47% at 42 °C, while the FRE was relatively constant at about 90%. Both removal efficiencies of NH(3)-N trended from about 100% at 33 °C to less than 50% at 42 °C. TMP and BWP ascended critically with temperature increase up to 336 and 304 mbar respectively by the end of the experiment. The values of suspended solids (SS) and the turbidity in the final effluent were negligible. The DO in the mixed liquor was varying with temperature change, while the pH was within the range of 6.7-8.3.  相似文献   

20.
Sludge characteristics of a submerged membrane bioreactor (MBR) and an activated sludge process (AS) were compared, during a first phase at the same operating conditions (low MLSS and conventional SRT) and in a second phase with a high sludge retention time (SRT) in the membrane bioreactor. During the first phase, a bimodal flocs size distribution was observed in the MBR with simultaneously a macro-flocs population (240 microm) bigger than the flocs of activated sludge due to the absence of recirculating pump, and also more microflocs (1 to 15 microm) and free suspended cells retained by the membrane. It is shown that the membrane leads to an accumulation of proteins and polysaccharides in the sludge supernatant which is probably responsible for the high fouling propensity of the sludge during the starting period of MBR. These compounds are partially degraded after 50 to 60 days of operation. In the first phase respirometric experiments didn't demonstrate a significant difference in the maximal removal rates of either MBR or AS biomass (with excess substrate), except in the dynamic period during which the membrane retention gave an advantage by increasing the biomass activity. On the other hand, the respirometry shows that the half saturation constant for nitrification was significantly higher in the MBR process, suggesting higher substrate transfer limitation. During the last phase, it is shown that an increase of SRT from 9 to 106 days leads to a diminution of average macro-flocs size in the MBR from about 240 to 70 microm. With the SRT increase, modification in the organic compounds is also observed (proteins, polysaccharides and COD) in the sludge supernatant. Increasing the SRT from 9 to 40 days seems to slightly reduce the level of organic compounds (probable biodegradation), but the concentrations increased when SRT changes from 40 days to 106 days (probable accumulation of non biodegradable compounds).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号