首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the functional mechanisms underlying the expression of inducible nitric oxide (NO) synthase (iNOS) in the rat small intestine following the administration of nonsteroidal anti-inflammatory drugs (NSAIDs) and found a correlation with the intestinal ulcerogenic properties of NSAIDs. Conventional NSAIDs (indomethacin, dicrofenac, naproxen, and flurbiprophen), a selective cyclooxygenase (COX)-1 inhibitor (SC-560) and a selective COX-2 inhibitor (rofecoxib) were administered p.o., and the intestinal mucosa was examined 24 hours later. Indomethacin decreased prostaglandin E2 (PGE2) production in the intestinal mucosa and caused intestinal hypermotility and bacterial invasion as well as the upregulation of iNOS expression and NO production, resulting in hemorrhagic lesions. Other NSAIDs similarly inhibited PGE2 production and caused hemorrhagic lesions with intestinal hypermotility as well as iNOS expression. Hypermotility in response to indomethacin was prevented by both PGE2 and atropine but not ampicillin, yet all these agents inhibited not only bacterial invasion but also expression of iNOS as well, resulting in prevention of intestinal lesions. SC-560, but not rofecoxib, caused a decrease in PGE2 production, intestinal hypermotility, bacterial invasion, and iNOS expression, yet this agent neither increased iNOS activity nor provoked intestinal damage because of the recovery of PGE2 production owing to COX-2 expression. Food deprivation totally attenuated both iNOS expression and lesion formation in response to indomethacin. In conclusion, the expression of iNOS in the small intestine following administration of NSAIDs results from COX-1 inhibition and is functionally associated with intestinal hypermotility and bacterial invasion. This process plays a major pathogenic role in the intestinal ulcerogenic response to NSAIDs.  相似文献   

2.
The expression of COX-2 is up-regulated in the rat stomach after administration of indomethacin, and the inhibition of this enzyme may be a key to NSAID-induced gastric damage. The present study investigated the mechanism for COX-2 expression induced in the rat stomach by indomethacin, in relation with the ulcerogenic processes. The animals were given indomethacin or SC-560 p.o., and the gastric mucosa was examined 8 hr later. Indomethacin decreased the mucosal PGE2 content and produced gross damage with gastric hypermotility and the expression of COX-2 mRNA in the mucosa. Although SC-560 did not produce damage, this agent caused a decrease in the PGE2 content and an increase in gastric motility as well as the up-regulation of COX-2 expression, and provoked damage in the presence of rofecoxib. Gastric lesions induced by indomethacin were prevented by both atropine (even in the presence of exogenous HCl) and omeprazole, although the hypermotility response was inhibited only by atropine. The COX-2 expression induced by indomethacin or SC-560 was inhibited by atropine, even in the presence of exogenous HCl, while omeprazole had no effect. The mucosal PGE2 content was decreased by SC-560 at 2 hr but recovered 8 hr later, and this recovery of PGE2 was attenuated by both atropine and rofecoxib but not omeprazole. These results suggested that the COX-2 expression in the stomach following treatment with indomethacin is functionally associated with gastric hypermotility response induced by COX-1 inhibition. Luminal acid does not play a role in the up-regulation of COX-2 expression in the stomach following administration of indomethacin.  相似文献   

3.
BACKGROUND AND AIM: We recently reported that cyclooxygenase (COX)-2 is upregulated in the rat small intestine after administration of indomethacin, and this may be the key to non-steroidal anti-inflammatory drug (NSAID)-induced intestinal damage. The present study investigated the mechanism for COX-2 expression induced in the rat small intestine by indomethacin, in relation with ulcerogenic processes. METHODS: Animals were given indomethacin or SC-560 p.o., and the intestinal mucosa was examined 24 h later. RESULTS: Indomethacin caused hemorrhagic lesions in the small intestine, accompanied with an increase in intestinal motility, bacterial invasion and inducible nitric oxide synthase (iNOS) activity, as well as the expression of COX-2 mRNA in the mucosa. Although SC-560 did not cause any damage, this agent caused intestinal hypermotility, the bacterial invasion and the upregulation of COX-2 expression. The mucosal PGE2 content was decreased by SC-560 at 3 h but recovered 12 h later, and this recovery of PGE2 was attenuated by both atropine and ampicillin, in addition to rofecoxib. The intestinal hypermotility response to indomethacin was prevented by both 16,16-dimethyl PGE2 and atropine, but not ampicillin. Yet all these agents inhibited not only the bacterial invasion but also the expression of COX-2 and iNOS activity in the intestinal mucosa following indomethacin treatment, resulting in the prevention of intestinal lesions. CONCLUSION: These results suggest that COX-2 expression in the intestinal mucosa following the administration of indomethacin is associated with intestinal hypermotility and bacterial invasion. The intestinal hypermotility caused by COX-1 inhibition may be a key to COX-2 expression after administration of NSAIDs and their intestinal ulcerogenic properties.  相似文献   

4.
Background and Aim:  We recently reported that cyclooxygenase (COX)-2 is upregulated in the rat small intestine after administration of indomethacin, and this may be the key to non-steroidal anti-inflammatory drug (NSAID)-induced intestinal damage. The present study investigated the mechanism for COX-2 expression induced in the rat small intestine by indomethacin, in relation with ulcerogenic processes.
Methods:  Animals were given indomethacin or SC-560 p.o., and the intestinal mucosa was examined 24 h later.
Results:  Indomethacin caused hemorrhagic lesions in the small intestine, accompanied with an increase in intestinal motility, bacterial invasion and inducible nitric oxide synthase (iNOS) activity, as well as the expression of COX-2 mRNA in the mucosa. Although SC-560 did not cause any damage, this agent caused intestinal hypermotility, the bacterial invasion and the upregulation of COX-2 expression. The mucosal PGE2 content was decreased by SC-560 at 3 h but recovered 12 h later, and this recovery of PGE2 was attenuated by both atropine and ampicillin, in addition to rofecoxib. The intestinal hypermotility response to indomethacin was prevented by both 16,16-dimethyl PGE2 and atropine, but not ampicillin. Yet all these agents inhibited not only the bacterial invasion but also the expression of COX-2 and iNOS activity in the intestinal mucosa following indomethacin treatment, resulting in the prevention of intestinal lesions.
Conclusion:  These results suggest that COX-2 expression in the intestinal mucosa following the administration of indomethacin is associated with intestinal hypermotility and bacterial invasion. The intestinal hypermotility caused by COX-1 inhibition may be a key to COX-2 expression after administration of NSAIDs and their intestinal ulcerogenic properties.  相似文献   

5.
This article reviews the pathogenic mechanism of non-steroidal anti-inflammatory drug (NSAID)-induced gastric damage, focusing on the relation between cyclooxygenase (COX) inhibition and various functional events. NSAIDs, such as indomethacin, at a dose that inhibits prostaglandin (PG) production, enhance gastric motility, resulting in an increase in mucosal permeability, neutrophil infiltration and oxyradical production, and eventually producing gastric lesions. These lesions are prevented by pretreatment with PGE2 and antisecretory drugs, and also via an atropine-sensitive mechanism, not related to antisecretory action. Although neither rofecoxib (a selective COX-2 inhibitor) nor SC-560 (a selective COX-1 inhibitor) alone damages the stomach, the combined administration of these drugs provokes gastric lesions. SC-560, but not rofecoxib, decreases prostaglandin E2 (PGE2) production and causes gastric hypermotility and an increase in mucosal permeability. COX-2 mRNA is expressed in the stomach after administration of indomethacin and SC-560 but not rofecoxib. The up-regulation of indomethacin-induced COX-2 expression is prevented by atropine at a dose that inhibits gastric hypermotility. In addition, selective COX-2 inhibitors have deleterious influences on the stomach when COX-2 is overexpressed under various conditions, including adrenalectomy, arthritis, and Helicobacter pylori-infection. In summary, gastric hypermotility plays a primary role in the pathogenesis of NSAID-induced gastric damage, and the response, causally related with PG deficiency due to COX-1 inhibition, occurs prior to other pathogenic events such as increased mucosal permeability; and the ulcerogenic properties of NSAIDs require the inhibition of both COX-1 and COX-2, the inhibition of COX-1 upregulates COX-2 expression in association with gastric hypermotility, and PGs produced by COX-2 counteract the deleterious effect of COX-1 inhibition.  相似文献   

6.
Survivin: a novel target for indomethacin-induced gastric injury   总被引:8,自引:0,他引:8  
BACKGROUND & AIMS: Nonsteroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal erosions and ulcers. Apoptosis is one of the mechanisms. The role of survivin, an antiapoptosis protein, in NSAID-induced gastric injury is unknown. We examined the role of survivin in NSAID-induced gastric mucosal and gastric cell injury. METHODS: We examined: (1) the effects of indomethacin (nonselective NSAID), celecoxib and NS-398 (cyclooxygenase [COX]-2-selective NSAIDs), SC-560 (a COX-1-selective NSAID), and SC-560 plus celecoxib on survivin expression and extent of injury in rat gastric mucosa; (2) the effects of indomethacin, NS-398, SC-560, and SC-560 plus NS-398 on survivin expression and injury in gastric epithelial (RGM-1) cells; and (3) the effects of survivin suppression with small interfering RNA (siRNA) on RGM-1 cell integrity at baseline and following indomethacin injury. RESULTS: Indomethacin treatment dose-dependently reduced survivin protein levels and caused severe injury of gastric mucosa and RGM-1 cells. Suppression of survivin expression with siRNA in RGM-1 cells caused cell damage and increased susceptibility to injury by indomethacin. Celecoxib treatment caused exfoliation of the mucosal surface epithelium, but neither caused deep erosions or altered survivin expression. Neither NS-398 nor SC-560 treatment altered survivin levels or produced injury in vivo or in vitro. COX-1 and COX-2 inhibitor combination caused injury in vivo and in vitro but did not decrease survivin expression. CONCLUSIONS: (1) Indomethacin, but not selective COX-1 or COX-2 inhibitors alone or in combination, reduces survivin expression in gastric mucosal cells and (2) significant reduction of survivin precedes greater severity of gastric injury.  相似文献   

7.
We examined the effect of cyclooxygenase (COX) inhibitors on dextran sulfate sodium (DSS)-induced ulcerative colitis in rats and investigated the role of COX isozymes in the pathogenesis of this model. Experimental colitis was induced by treatment with 2.5% DSS in drinking water for 6 days. Indomethacin (a nonselective COX inhibitor), SC-560 (a selective COX-1 inhibitor), or celecoxib (a selective COX-2 inhibitor) was given PO twice daily for 6 days, during the first 3 or last 3 days of the experimental period. Daily treatment with 2.5% DSS for 6 days caused damage to the colon, with a decrease in body weight gain and colon length as well as an increase of myeloperoxidase (MPO) activity. All COX inhibitors given for 6 days significantly worsened the severity of DSS-induced colonic damage with increased MPO activity. The aggravation was also observed by SC-560 given for the first 3 days or by celecoxib given for the last 3 days. The expression of COX-2 mRNA in the colon was upregulated on day 3 during DSS treatment, with significant increase of prostaglandin E2 PGE2 production. The PGE2 content on day 3 during DSS treatment was inhibited by both indomethacin and SC-560, but not by celecoxib; on day 6 it was suppressed by both indomethacin and celecoxib, but not SC-560. These results suggest that endogenous prostaglandins (PGs) afford protection against colonic ulceration, yet the COX isozyme responsible for the production of PGs differs depending on the stage of ulceration; COX-1 in the early stage and COX-2 in the late stage.  相似文献   

8.
Duodenal HCO3 secretion increases in response to luminal acid, mediated by endogenous nitiric oxide (NO) as well as prostaglandins (PGs). In this study, we examined the effects of various inhibitors of cyclooxygenase (COX) or NO synthase (NOS) on the acid-induced HCO3 secretion in rats and determined the enzyme isoforms responsible for this response. A proximal duodenal loop was perfused with saline under urethane anesthesia, and the HCO3 secretion was measured at pH 7.0 using a pH-stat method and by adding 10 mM HCl. Mucosal acidification was performed by exposing the loop to 10 mM HCl for 10 min. Indomethacin, SC-560 (a selective COX-1 inhibitor) and rofecoxib (a selective COX-2 inhibitor) were given intraduodenally 1 hr before exposure to 10 mM HCl, while N G-nitro-l-arginine methyl ester (l-NAME: a nonselective NOS inhibitor) and aminoguanidine (a relatively selective inhibitor of iNOS) were given subcutaneously 3 hr before the acidification. The mucosal acidification increased the HCO3 secretion, with a rise in mucosal PGE2 content and luminal release of NO. The HCO3 secretory and PGE2 biosynthetic responses were significantly inhibited by indomethacin and SC-560, while rofecoxib had no effect on these responses. On the other hand, l-NAME, but not aminoguanidine, attenuated NO release following the acidification, resulting in inhibition of the acid-induced HCO3 secretion in a l-arginine-sensitive manner. Neither COX-2 nor iNOS mRNAs were observed in the mucosa before and 1 hr after acidification, while the gene expression of COX-1 and nNOS was constitutively detected in the mucosa and appeared to be slightly up-regulated after the acid stimulation. These results suggest that COX-1 and cNOS play as the respective key enzyme responsible for producing PG and NO following the duodenal acidification, both of which are involved in the mechanism for the acid-induced HCO3 secretion in the duodenum.  相似文献   

9.
Gastrointestinal Damage Induced by Celecoxib and Rofecoxib in Rats   总被引:3,自引:0,他引:3  
Five experimental models were developed in different groups of Wistar rats (N = 15) to study selective COX-2-inhibitor NSAIDs such as celecoxib and rofecoxib, as follows: (1) dose-dependent oral Celecoxib and Rofecoxib for 5 days, and 24 hr after oral indomethacin; (2) Same as 1 but subcutaneously; (3) gastric ulcer induced by glacial acetic acid; (4) duodenal ulcer induced by cysteamine; and (5) stress by immobilization and immersion in water at 15°C for 6 hr. Celecoxib and Rofecoxib, either orally or subcutaneously, did not produce necrotic lesions in healthy gastrointestinal mucosa (0%), showing normal histology. In contrast, previously indomethacin-induced lesions were aggravated (90%, P < 0.001). Total necrosis in the small intestine as well as increased ulcers and perforation of gastric and duodenal ulcers induced by acetic acid and cysteamine were observed. There was also aggravation of the necrotic gastric area in stress (60–90%, P < 0.05). Celecoxib and rofecoxib showed neutrophilia (5000/mm3) similar to that with indomethacin. In contrast, there was no leukocyte infiltration in the gastric mucosa; thus, we can consider it a selective COX-2 NSAID. In conclusion, celecoxib and rofecoxib at doses causing COX-2 but not COX-1 inhibition did not produce toxic lesions in healthy gastrointestinal mucosa, yielding a broad therapeutic margin. In contrast, when administered in altered gastrointestinal mucosa, they aggravated and complicated gastric ulcers as well as necrosis in the small intestine, consequently restricting their clinical use.  相似文献   

10.
Pharmacological analysis of cyclooxygenase-1 in inflammation   总被引:23,自引:0,他引:23       下载免费PDF全文
The enzymes cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) catalyze the conversion of arachidonic acid to prostaglandin (PG) H2, the precursor of PGs and thromboxane. These lipid mediators play important roles in inflammation and pain and in normal physiological functions. While there are abundant data indicating that the inducible isoform, COX-2, is important in inflammation and pain, the constitutively expressed isoform, COX-1, has also been suggested to play a role in inflammatory processes. To address the latter question pharmacologically, we used a highly selective COX-1 inhibitor, SC-560 (COX-1 IC50 = 0.009 μM; COX-2 IC50 = 6.3 μM). SC-560 inhibited COX-1-derived platelet thromboxane B2, gastric PGE2, and dermal PGE2 production, indicating that it was orally active, but did not inhibit COX-2-derived PGs in the lipopolysaccharide-induced rat air pouch. Therapeutic or prophylactic administration of SC-560 in the rat carrageenan footpad model did not affect acute inflammation or hyperalgesia at doses that markedly inhibited in vivo COX-1 activity. By contrast, celecoxib, a selective COX-2 inhibitor, was anti-inflammatory and analgesic in this model. Paradoxically, both SC-560 and celecoxib reduced paw PGs to equivalent levels. Increased levels of PGs were found in the cerebrospinal fluid after carrageenan injection and were markedly reduced by celecoxib, but were not affected by SC-560. These results suggest that, in addition to the role of peripherally produced PGs, there is a critical, centrally mediated neurological component to inflammatory pain that is mediated at least in part by COX-2.  相似文献   

11.
In this study, we evaluated the effect of two different dosages of therapeutically prescribed nonsteroidal anti-inflammatory drugs (NSAIDs), ibuprofen, diclofenac, nimesulide, meloxicam, and celecoxib (ED80 for COX-1 and COX-2) on normal gastric mucosa and mucosa, previously exposed to 20% ethanol. At COX-2-inhibiting dosages, the NSAIDs tested were nonulcerogenic, and the same response profile was observed in “adapted” stomachs. Interestingly, low doses of nimesulide and celecoxib increase the levels of Prostaglandin E2 and COX-2, and protect against subsequent 100% ethanol exposition, suggesting that these drugs may act as “mild irritants” to gastric mucosa. The ulcerogenic response to NSAIDs was prevented by the previous 20% ethanol exposition, probably the result of nitric oxide synthesis, because PGE2 levels in gastric mucosa were reduced by these agents and a concomitant nitric oxide blockade reversed this protection. Supported by FAPESP, Brazil.  相似文献   

12.
Abstract

Objective. It is widely thought that cyclooxygenase 1 (COX-1) inhibition with consequential decreases in mucosal prostaglandins, along with concomitant inhibition of COX-2, is pivotal in nonsteroidal anti-inflammatory drug-induced (NSAID) enteropathy. We examined the role of COX-1, COX-2 and topical effects of drugs in NSAID enteropathy. Material and methods. We quantified small intestinal damage and prostaglandin E2 levels in wild-type, COX-1 and COX-2 deficient mice after administration of R-2-phenylpropionic acid (which has the same topical characteristics as conventional NSAIDs but does not affect the COX enzymes), the conventional NSAIDs flurbiprofen and the selective COX-2 inhibitor celecoxib. We also measured intestinal permeability and inflammation in rats given the selective COX-1 inhibitor SC-560 and NSAIDs. The parameters were assessed at baseline and after administration of the drugs. Results. R-2-phenylpropionic acid caused small intestinal damage in COX-2-/- and wild-type mice given celecoxib, but not in wild type or COX-1-/- mice. PGE2 levels in mice dosed with R-2-phenylpropionic acid were elevated. Indomethacin raised permeability and caused inflammation in rats. Conclusions. The combination of COX-2 absence (or inhibition) and the topical effect of NSAIDs lead to changes characteristic of NSAID enteropathy without concomitant COX-1 inhibition and/or associated decreases in mucosal prostaglandins. COX-2 appears to be more important for maintaining small bowel integrity than COX-1.  相似文献   

13.
14.
BACKGROUND & AIMS: Selective cyclooxygenase (COX)-2 inhibitors produce less gastric damage than conventional nonsteroidal anti-inflammatory drugs (NSAIDs), suggesting that NSAIDs cause damage by inhibiting COX-1. We tested this hypothesis in rats by using a selective COX-1 inhibitor (SC-560). METHODS: The effects of SC-560, celecoxib (selective COX-2 inhibitor), or a combination of both inhibitors on gastric damage and prostaglandin synthesis were determined. Selectivity of the drugs for COX-1 vs. COX-2 was assessed in the carrageenan-airpouch model. A COX-1-preferential inhibitor, ketorolac, was also evaluated. The effects of these inhibitors on leukocyte adherence to vascular endothelium and on gastric blood flow were assessed. RESULTS: SC-560 markedly reduced gastric prostaglandin synthesis and platelet COX-1 activity, but spared COX-2 and did not cause gastric damage. Celecoxib did not affect gastric prostaglandin E(2) synthesis and did not cause gastric damage. However, the combination of SC-560 and celecoxib invariably caused hemorrhagic erosion formation, comparable to that seen with indomethacin. Ketorolac caused damage only at doses that inhibited both COX isoforms, or when given with a COX-2 inhibitor. Celecoxib, but not SC-560, significantly increased leukocyte adherence, whereas SC-560, but not celecoxib, reduced gastric blood flow. CONCLUSIONS: Inhibition of both COX-1 and COX-2 is required for NSAID-induced gastric injury in the rat.  相似文献   

15.
Nonsteroidal antiinflammatory drugs (NSAIDs) produce gastric damage in experimental animals, irrespective of the route of administration. However, aspirin (ASA) causes damage only when it is given orally. In the present study, we examined the gastric ulcerogenic effect of subcutaneously administered ASA in rats, in comparison with various NSAIDs, and investigated the reason why ASA does not cause damage in the stomach, in relation to its metabolite salicylic acid (SA). Since the antiinflammatory action of SA is known to be mediated, partly, by endogenous adenosine (AD), we also examined the possible involvement of AD in the protective action of SA. Various NSAIDs (indomethacin, flurbiprofen, naproxen, diclrofenac, ASA, SA) were administered subcutaneously, and the gastric mucosa was examined macroscopically 4 hr later. All NSAIDs tested, except ASA and SA, caused hemorrhagic lesions in the stomach, with a marked gastric hypermotility and a decrease of mucosal PGE2 contents. These ulcerogenic and motility responses caused by NSAIDs were blocked by pretreatment with atropine or PGE2. ASA, although inhibiting PGE2 generation, caused neither hypermotility nor damage in the stomach. On the other hand, SA alone inhibited basal gastric motility without any effect on mucosal PGE2 contents, and this agent, when given together with indomethacin, prevented gastric hypermotility and lesion formation in response to indomethacin, without affecting the reduced PGE2 contents. Likewise, ASA inhibited these responses to indomethacin, yet the effects appeared later than those of SA. Following administration of ASA, the blood SA levels reached a peak within 30 min and remained elevated for 4 hr. In addition, the protective effect of SA was not significantly influenced by either the AD deaminase or the AD-receptor antagonists. These results suggest that the failure of parenteral ASA to induce gastric damage may be explained by a protective action of SA metabolized from ASA. SA has a cytoprotective action against NSAID-induced gastric lesions, and this action is not mediated by endogenous AD but may be functionally associated with inhibition of the gastric motility response.  相似文献   

16.
OBJECTIVE: Neutrophil activation followed by free radical production is a feature that is common to the various forms of gastric injury. However, the roles of cyclooxygenase (COX)-1 and -2 in neutrophil activation have yet to be clarified in the gastric mucosa. We examined the roles of both COX-1 and COX-2 in neutrophil activation and free radical production in ischemia-reperfusion (IR) injury in the gastric mucosa of mice. MATERIAL AND METHODS: Ischemia was induced by clamping the celiac artery for 30 min, then removing the clamp for 90 min. SC-560, a selective COX-1 inhibitor; NS-398, a selective COX-2 inhibitor; or rebamipide, a mucoprotective agent, was administered to mice 60 min before ischemia. Gastric damage was evaluated histologically and by measuring myeloperoxidase (MPO) activity. Expressions of COX protein and intercellular adhesion molecule (ICAM)-1 were evaluated by Western blot analysis and ELISA, respectively. Effects of these drugs on thiobarbituric acid reactive substances (TBARS) and gastric blood flow were also evaluated. RESULTS: COX-2 expression was induced in gastric mucosa 60 min after reperfusion, whereas COX-1 expression remained unaltered. Localization of COX-1 and ICAM-1 in IR-injured mucosa was observed mainly in endothelial cells, while COX-2 expression was detected in mesenchymal cells such as mononuclear cells, spindle-like cells and endothelial cells. SC-560 significantly decreased gastric blood flow at the reperfusion point and reduced gastric mucosal injury in IR mice. Furthermore, SC-560 pretreatment significantly reduced MPO activity, TBARS levels and ICAM-1 expression. In contrast, NS-398 significantly increased ICAM-1 expression, MPO activity and TBARS levels, and aggravated gastric damage in IR mice. Rebamipide pretreatment reduced both COX-2 expression and IR injury. CONCLUSIONS: In IR mice, COX-2 protects the gastric mucosa by down-regulating ICAM-1 expression, whereas COX-1 is involved in up-regulating reperfusion flow, thereby aggravating the mucosa.  相似文献   

17.
We investigated the protective effect of mild stress on gastric lesions induced by cold-restraint stress, especially concerning prostaglandins (PGs)/cyclo-oxygenase (COX) isozymes. Rats were exposed to severe stress (cold-restraint stress at 10°C for 6 hr) or mild stress (cold-restraint stress at 10°C for 30 min and kept at room temperature for 60 min) followed by severe stress. Severe stress induced gastric lesions, with a concomitant decrease in body temperature (BT). The ulcerogenic response was inhibited by atropine but worsened by indomethacin and SC-560 but not rofecoxib, although none of these agents had any effect on the change in BT. Mild stress suppressed the gastric ulceration and the decrease in BT induced by severe stress, and these effects were reversed by both COX-1 and COX-2 inhibitors. The expression of COX-2 in the stomach was up-regulated from 4 hr after severe stress and this response was slightly expedited by mild stress. COX-2 was also expressed in the hypothalamus under normal and stressed conditions. Quinacrine (phospholipase A2 inhibitor) attenuated the protective effect of mild stress on the ulceration and decrease in BT caused by severe stress. TA-0910 (TRH analogue) at a low dose also prevented the gastric ulceration and the decrease in BT induced by severe stress. These results suggest that mild stress protects against cold-restraint stress-induced gastric ulceration, and the effect is peripherally and centrally mediated by PGs derived from both COX-1 and COX-2 through the activation of phospholipase A2. TRH may also be involved in the protective effect of mild stress, probably through regulation of the thermogenic system.  相似文献   

18.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of arthritis and pain. These drugs tend to cause significant side effects, however, including gastric and intestinal toxicity. The mechanism of action of NSAIDs is through their inhibition of the key enzyme of prostaglandin biosynthesis, the cyclooxygenase. Recently, two forms of cyclooxygenase have been found to exist: COX-1 and COX-2, the constitutive and inducible forms, respectively. COX-1 exists in the stomach, intestine, kidneys and platelets, while COX-2, the inducible form, is expressed during inflammation. The therapeutic effects of NSAIDs are largely the result of inhibition of the enzyme cyclooxygenase-2 (COX-2), whereas the toxic effects (e.g., gastrointestinal, renal and platelet effects) are primarily due to the inhibition of COX-1. Individual NSAIDs show different potencies against COX-1 compared with COX-2 and this explains the variations in the side effects of NSAIDs at their anti-inflammatory doses. Drugs with high potency against COX-2 and a better COX-2-/COX-1 activity ratio will have anti-inflammatory activity with fewer gastrointestinal side effects. In contrast piroxicam and indomethacin, which drugs have a much higher potency against COX-1 than against COX-2, are amongst those with the highest gastrointestinal toxicity. Based on these findings, COX-2 seems to be an ideal target for the development of new anti-inflammatory drugs. Several compounds with preferential or specific COX-2 inhibiting properties have been synthesized and evaluated in pre-clinical and clinical studies i.e. Meloxicam, Celecoxib, MK-966, Flusolid and L-745, 337. The COX-2 selectivity of these novel NSAIDs relate well to their favorable gastrointestinal tolerability profile. Clinical trials have shown meloxicam and celecoxib to be as effective as currently available NSAIDs, but with an improved gastrointestinal tolerability profile. Further clinical trials and large-scale postmarketing surveillance programs are needed, however, to confirm the potential therapeutic benefits of these novel preferential or specific COX-2 inhibitors.  相似文献   

19.
BACKGROUND: The aim of the present study was to evaluate the intervention of COX-1- and COX-2-derived prostaglandins in the responses of human gastroepiploic artery to sympathetic stimulation and norepinephrine. METHODS: Rings of human gastroepiploic artery were obtained from 45 patients (26 men and 19 women) undergoing gastrectomy. The rings were suspended in organ baths for isometric recording of tension. We studied the responses to electrical field stimulation, norepinephrine, and acetylcholine, in the absence and presence of COX-1 or COX-2 inhibition. RESULTS: The COX-1 and COX-2 inhibitor aspirin at high concentrations (10(-6) to 10(-5) mol/L) and the COX-2 inhibitor nimesulide (10(-6) mol/L) potentiated the contractile responses of the arterial rings to sympathetic neurogenic stimulation and norepinephrine. In contrast, lower concentrations of aspirin (10(-8) to 10(-7) mol/L) or the COX-1 inhibitor SC-560 (3 x10(-8) mol/L) did not affect these responses. The vascular relaxation induced by acetylcholine was not affected by COX-1 and COX-2 inhibition. CONCLUSIONS: The results provide functional evidence that vasodilator prostaglandins are active components of the response of human gastroepiploic artery to neurogenic stimulation and norepinephrine. Aspirin at high concentrations and the COX-2 selective inhibitor nimesulide potentiated the contractile response of gastroepiploic artery to adrenergic stimulation by inhibiting COX-2-derived PGI(2). Aspirin at low concentrations and the COX-1 selective inhibitor SC-560 did not modify the contractile responses, possibly due to minor importance of vasoconstrictor prostaglandins (TXA(2)) as active components of the response of gastroepiploic artery to adrenergic stimulation.  相似文献   

20.
Nonsteroidal antiinflammatory drugs (NSAIDs) are widely used for the treatment of inflammatory diseases, but significant side effects such as gastrointestinal erosion and renal damage limit their use. NSAIDs inhibit the enzyme cyclooxygenase (COX), which catalyzes the conversion of arachidonic acid to prostaglandins (PGs) and thromboxane. Two forms of COX have been identified--COX-1, which is constitutively expressed in most tissues and organs, and the inducible enzyme, COX-2, which has been localized primarily to inflammatory cells and tissues. In an animal model of acute inflammation (injection of carrageenan into the footpad), edema was produced that was associated with marked accumulation of COX-2 mRNA and thromboxane. A selective inhibitor of COX-2 (SC-58125) inhibited edema at the inflammatory site and was analgesic but had no effect on PG production in the stomach and did not cause gastric toxicity. These data suggest that selective inhibition of COX-2 may produce superior antiinflammatory drugs with substantial safety advantages over existing NSAIDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号