首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown the involvement of Na(+) channel as well as N-type and P/Q-type Ca(2+) channels in the oxygen and glucose deprivation-induced injury in rat cerebrocortical slices. In the present study, we investigated the influence of halothane on the cerebroprotective effects of a variety of Na(+) and Ca(2+) channel blockers in rat cerebrocortical slices. The hypoxic injury was attenuated by Na(+) channel blockers including tetrodotoxin, lidocaine and dibucaine, and Ca(2+) channel blockers, such as verapamil, omega-agatoxin IVA and omega-conotoxin GVIA. Halothane abolished the protective effects of lidocaine, dibucaine and verapamil, all of which block the respective cation channels in a voltage-dependent manner, without affecting the actions of tetrodotoxin, omega-agatoxin IVA and omega-conotoxin GVIA, which reveal voltage-independent blockade. On the other hand, the nitric oxide synthesis estimated from the extracellular cyclic GMP formation was elevated during exposure to hypoxia. All channel blockers tested here attenuated hypoxia-evoked nitric oxide synthesis. Halothane blocked almost completely these actions of lidocaine and verapamil. Moreover, the Na(+) and Ca(2+) channel blockade by these compounds, as determined by veratridine- and KCl-stimulated nitric oxide synthesis, respectively, was also reversed by halothane. These findings suggest that an anesthetic agent halothane reversed the Na(+) and Ca(2+) channel blockade of several voltage-dependent ion channel blockers, leading to the attenuation of their cerebroprotective actions. Therefore, the influence of halothane anesthesia should be taken into consideration for the evaluation of neuroprotective action of Na(+) and Ca(2+) channel blockers.  相似文献   

2.
Lithium has been proven to be effective in the therapy of bipolar disorder, but its mechanism of pharmacological action is not clearly defined. We examined the effects of lithium on voltage-dependent Na(+) channels, nicotinic acetylcholine receptors, and voltage-dependent Ca(2+) channels, as well as catecholamine secretion in cultured bovine adrenal chromaffin cells. Lithium chloride (LiCl) reduced veratridine-induced (22)Na(+) influx in a concentration-dependent manner, even in the presence of ouabain, an inhibitor of Na(+), K(+)-ATPase. Glycogen synthase kinase-3 (GSK-3) inhibitors (SB216763, SB415286 or the GSK-3 inhibitor IX) did not affect veratridine-induced (22)Na(+) influx, as well as inhibitory effect of LiCl on veratridine-induced (22)Na(+) influx. Enhancement of veratridine (site 2 toxin)-induced (22)Na(+) influx caused by alpha-scorpion venom (site 3 toxin), beta-scorpion venom (site 4 toxin), or Ptychodiscus brevis toxin-3 (site 5 toxin), still occurred in the presence of LiCl in the same manner as in the control cells. LiCl also reduced veratridine-induced (45)Ca(2+) influx and catecholamine secretion. In contrast, LiCl (< or = 30 mM) had no effect on nicotine-induced (22)Na(+) influx, (45)Ca(2+) influx and catecholamine secretion, as well as on high K(+)-induced (45)Ca(2+) influx and catecholamine secretion. Chronic treatment with LiCl at 100mM (but not at < or = 30 mM) significantly reduced cell viability in a time-dependent manner. These results suggest that lithium selectively inhibits Na(+) influx thorough Na(+) channels and subsequent Ca(2+) influx and catecholamine secretion, independent of GSK-3 inhibition.  相似文献   

3.
Gabapentin and pregabalin (S-(+)-3-isobutylgaba) produced concentration-dependent inhibitions of the K(+)-induced [Ca(2+)](i) increase in fura-2-loaded human neocortical synaptosomes (IC(50)=17 microM for both compounds; respective maximal inhibitions of 37 and 35%). The weaker enantiomer of pregabalin, R-(-)-3-isobutylgaba, was inactive. These findings were consistent with the potency of these drugs to inhibit [(3)H]-gabapentin binding to human neocortical membranes. The inhibitory effect of gabapentin on the K(+)-induced [Ca(2+)](i) increase was prevented by the P/Q-type voltage-gated Ca(2+) channel blocker omega-agatoxin IVA. The alpha 2 delta-1, alpha 2 delta-2, and alpha 2 delta-3 subunits of voltage-gated Ca(2+) channels, presumed sites of gabapentin and pregabalin action, were detected with immunoblots of human neocortical synaptosomes. The K(+)-evoked release of [(3)H]-noradrenaline from human neocortical slices was inhibited by gabapentin (maximal inhibition of 31%); this effect was prevented by the AMPA receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydro[f]quinoxaline-7-sulphonamide). Gabapentin and pregabalin may bind to the Ca(2+) channel alpha 2 delta subunit to selectively attenuate depolarization-induced Ca(2+) influx of presynaptic P/Q-type Ca(2+) channels; this results in decreased glutamate/aspartate release from excitatory amino acid nerve terminals leading to a reduced activation of AMPA heteroreceptors on noradrenergic nerve terminals.  相似文献   

4.
Gabapentin is a widely used drug with anticonvulsant, antinociceptive and anxiolytic properties. Although it has been previously shown that Gabapentin binds with high affinity to the alpha(2)delta subunit of voltage-operated Ca(2+) channels (VOCC), little is known about the functional consequences of this interaction. Here, we investigated the effect of Gabapentin on VOCCs and synaptic transmission in rat hippocampus and neocortex using whole-cell patch clamp and confocal imaging techniques. Gabapentin (100-300 microM) did not affect the peak amplitude or voltage-dependency of VOCC currents recorded from either dissociated or in situ neocortical and hippocampal pyramidal cells. In contrast, Gabapentin inhibited K(+)-evoked increases in [Ca(2+)] in a subset of synaptosomes isolated from rat hippocampus and neocortex in a dose-dependent manner, with an apparent half-maximal inhibitory effect at approximately 100 nM. In hippocampal slices, Gabapentin (300 microM) inhibited the amplitude of evoked excitatory- and inhibitory postsynaptic currents recorded from CA1 pyramidal cells by 30-40%. Taken together, the results suggest that Gabapentin selectively inhibits Ca(2+) influx by inhibiting VOCCs in a subset of excitatory and inhibitory presynaptic terminals, thereby attenuating synaptic transmission.  相似文献   

5.
The effect of diazoxide, a K+ channel opener, on apoptotic cell death was investigated in HepG2 human hepatoblastoma cells. Diazoxide induced apoptosis in a dose-dependent manner and this was evaluated by flow cytometric assays of annexin-V binding and hypodiploid nuclei stained with propidium iodide. Diazoxide did not alter intracellular K+ concentration, and various inhibitors of K+ channels had no influence on the diazoxide-induced apoptosis; this implies that K+ channels activated by diazoxide may be absent in the HepG2 cells. However, diazoxide induced a rapid and sustained increase in intracellular Ca(2+) concentration, and this was completely inhibited by the extracellular Ca(2+) chelation with EGTA, but not by blockers of intracellular Ca(2+) release (dantrolene and TMB-8). This result indicated that the diazoxide-induced increase of intracellular Ca(2+) might be due to the activation of a Ca(2+) influx pathway. Diazoxide-induced Ca(2+) influx was not significantly inhibited by either voltage-operative Ca(2+) channel blockers (nifedipine or verapamil), or by inhibitors of Na+, Ca(2+)-exchanger (bepridil and benzamil), but it was inhibited by flufenamic acid (FA), a Ca(2+)-permeable nonselective cation channel blocker. A quantitative analysis of apoptosis by flow cytometry revealed that a treatment with either FA or BAPTA, an intracellular Ca(2+) chelator, significantly inhibited the diazoxide-induced apoptosis. Taken together, these results suggest that the observed diazoxide-induced apoptosis in the HepG2 cells may result from a Ca(2+) influx through the activation of Ca(2+)-permeable non-selective cation channels. These results are very significant, and they lead us to further suggest that diazoxide may be valuable for the therapeutic intervention of human hepatomas.  相似文献   

6.
Rat or human neocortical synaptosomes were used to study the role of voltage-gated Ca(2+) channels and the Na(+)/Ca(2+) exchanger in (45)Ca(2+) influx into nerve terminals. K(+) depolarization-induced (45)Ca(2+) influx through voltage-gated Ca(2+) channels into rat or human synaptosomes was completely blocked by mibefradil 30 microM or Cd(2+) 100 microM but was not affected by tetrodotoxin 1 microM. It was reduced by omega-agatoxin IVA 0.2 microM by 68% in synaptosomes of either species, whereas omega-conotoxin GVIA 0.1 microM and nifedipine 1 microM had no effect. Veratridine-induced (45)Ca(2+) entry into rat neocortical synaptosomes was completely blocked by mibefradil 30 microM, reduced by 80% by Cd(2+) 100 microM, by 90% by tetrodotoxin 1 microM and by 53% by omega-agatoxin IVA 0.2 microM but not by omega-conotoxin GVIA 0.1 microM or nifedipine 1 microM. Na(+)/Ca(2+) exchanger-mediated (45)Ca(2+) uptake into rat neocortical synaptosomes evoked by replacement of Na(+) by choline(+) in the incubation buffer was reduced by KB-R7943 (3-50 microM), an inhibitor of the Na(+)/Ca(2+) exchanger, in a concentration-dependent manner (maximal inhibition by 46% at 50 microM; IC(23%)=7.1 microM). Mibefradil also inhibited the Na(+)/Ca(2+) exchanger-mediated Ca(2+) uptake, although at 3.7 times lower potency (IC(23%)=26 microM). It is concluded that in rat and human neocortical nerve terminals Ca(2+) entry is mediated under physiological conditions by P/Q-type, but not by N- or L-type Ca(2+) channels or the Na(+)/Ca(2+) exchanger. If the cytosolic Na(+) concentration is increased, Ca(2+) is also taken up via the Na(+)/Ca(2+) exchanger. In addition to the ability of mibefradil to block all voltage-operated Ca(2+) channels, this drug is a low potency inhibitor of the Na(+)/Ca(2+) exchanger.  相似文献   

7.
The highly potent marine toxin maitotoxin (MTX) evoked an increase in cytosolic Ca(2+) levels in fura-2 loaded rat aortic smooth muscle cells, which was dependent on extracellular Ca(2+). This increase was almost fully inhibited by KB-R7943, a potent selective inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger (NCX). Cell viability was assessed using ethidium bromide uptake and the alamarBlue cytotoxicity assay. In both assays MTX-induced toxicity was attenuated by KB-R7943, as well as by MDL 28170, a membrane permeable calpain inhibitor. Maitotoxin-evoked contractions of rat aortic strip preparations in vitro, which persist following washout of the toxin, were relaxed by subsequent addition of KB-R7943 or MDL 28170, either in the presence of, or following washout of MTX. These results suggest that MTX targets the Na(+)/Ca(2+) exchanger and causes it to operate in reverse mode (Na(+) efflux/Ca(2+) influx), thus leading to calpain activation, NCX cleavage, secondary Ca(2+) overload and cell death.  相似文献   

8.
BACKGROUND AND PURPOSE The Na(+) /Ca(2+) exchanger is a bi-directional transporter that plays an important role in maintaining the concentration of cytosolic Ca(2+) ([Ca(2+) ](i) ) of quiescent platelets and increasing it during activation with some, but not all, agonists. There are two classes of Na(+) /Ca(2+) exchangers: K(+) -independent Na(+) /Ca(2+) exchanger (NCX) and K(+) -dependent Na(+) /Ca(2+) exchanger (NCKX). Platelets have previously been shown to express NCKX1. However, initial studies from our laboratory suggest that NCX may also play a role in platelet activation. The objective of this study was to determine if the human platelet expresses functional NCXs. EXPERIMENTAL APPROACH RT-PCR, DNA sequencing and Western blot analysis were utilized to characterize the human platelet Na(+) /Ca(2+) exchangers. Their function during quiescence and collagen-induced activation was determined by measuring [Ca(2+) ](i) with calcium-green/fura-red in response to: changes in the Na(+) and K(+) gradient, NCX pharmacological inhibitors (CBDMB, KB-R7943 and SEA0400) and antibodies specific to extracellular epitopes of the exchangers. KEY RESULTS Human platelets express NCX1.3, NCX3.2 and NCX3.4. The NCXs operate in the Ca(2+) efflux mode in resting platelets and also during their activation with thrombin but not collagen. Collagen-induced increase in [Ca(2+) ](i) was reduced with the pharmacological inhibitors of NCX (CBDMB, KB-R7943 or SEA0400), anti-NCX1 and anti-NCX3. In contrast, anti-NCKX1 enhanced the collagen-induced increase in [Ca(2+) ](i) . CONCLUSIONS AND IMPLICATIONS Human platelets express K(+) -independent Na(+) /Ca(2+) exchangers NCX1.3, NCX3.2 and NCX3.4. During collagen activation, NCX1 and NCX3 transiently reverse to promote Ca(2+) influx, whereas NCKX1 continues to operate in the Ca(2+) efflux mode to reduce [Ca(2+) ](i) .  相似文献   

9.
The role of Na(+) and Na(+) exchangers in intracellular Ca(2+) elevation and leukotriene B(4) (LTBs) formation was investigated in granulocyte macrophage colony-stimulating factor (GM-CSF)-primed, fMLP-stimulated human neutrophils. Isotonic substitution of extracellular Na(+) with N-methyl-D-glucamine(+) (NMDG(+)) resulted in over 85% inhibition of the LTBs generation observed (from 14.1+/-0.9pmol/10(6) neutrophils to 1.7+/-1.0pmol/10(6) neutrophils at 0.3 microM fMLP). Isotonic substitution of Na(+) with NMDG(+) also induced a significant inhibition of fMLP-induced rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)) (from 2.17- to 0.78-fold increase over basal levels). Pretreatment with an inhibitor of the Na(+)/Ca(2+) exchanger (benzamil) did not inhibit either [Ca(2+)](i) rise or LTBs production, indicating that the observed effects of extracellular Na(+)-deprivation were unrelated to the Na(+)/Ca(2+) exchanger in receptor-mediated Ca(2+) influx, as previously hypothesized. LTBs production by thapsigargin-activated neutrophils was not affected by Na(+) depletion, but was totally abolished in the presence of EGTA, suggesting that store depletion-driven extracellular Ca(2+) influx is required for leukotriene synthesis and that this process is independent of Na(+)-deprivation. Exposure to Na(+)-free medium for the time of GM-CSF priming led to a significant decrease of intracellular pH values, suggesting a role of the Na(+)/H(+) exchanger in intracellular Na(+) depletion. Reducing the time of Na(+)-deprivation totally reversed the observed effect on LTBs production, resulting in enhanced, rather than inhibited, formation of LTBs. These results indicate that LTBs generation and [Ca(2+)](i) rise in human neutrophils primed by GM-CSF and stimulated with fMLP is dependent on intracellular Na(+) concentration, and, at variance with previously published results, unrelated to the Ca(2+) influx through the Na(+)/Ca(2+) exchanger.  相似文献   

10.
We studied the effects of carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in PC12 cells using fura-2 fluorescence imaging. Carmustine (100 microM) caused a delayed increase in [Ca(2+)](i) that developed within approximately 3 h. This effect was enhanced in cells that were pretreated with an inhibitor of glutathione (GSH) synthesis, buthionine sulfoximine (BSO, 200 microM, 24 h), and was suppressed in cells that were treated with an antioxidant deferoxamine (50 microM). The carmustine-induced increase in [Ca(2+)](i) was absolutely dependent on the presence of extracellular Ca(2+) and could be inhibited by dihydropyridine blockers of L-type voltage-gated Ca(2+) channels (nimodipine or nitrendipine, 10 microM). The increase in [Ca(2+)](i) was also suppressed in Cl(-)-free solution and in the presence of the Cl(-) channel blockers, indanyloxyacetic acid 94 (IAA-94, 100 microM) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 microM). The inhibition was complete when the blockers were applied simultaneously with carmustine and was partial when the blockers were applied after the initial increase in [Ca(2+)](i). We conclude that carmustine induces an influx of extracellular Ca(2+) through L-type Ca(2+) channels and that this effect is mediated by oxidative stress that results from the depletion of GSH following the inhibition by carmustine of glutathione reductase.  相似文献   

11.
Within the placenta, a specialized Ca(2+) transport pathway develops in trophoblasts to promote growth of the fetus and hypothetically to enhance fetal uptake of Pb(2+). This hypothesis could not be tested until a method to monitor Pb(2+) influx by indo-1 fluorescence quench became available. We have applied this new method to cultured undifferentiated and differentiated Rcho-1 trophoblastic cells. Pb(2+) concentrations of 1 and 10 microM are equivalent to blood levels of 20 and 200 microg/dl in pregnant women. Over this range, Pb(2+) uptake increased with time and concentration in medium containing 1 mM Ca(2+) but was greater in Ca(2+)-omitted solutions. Activation of capacitative Ca(2+) entry (CCE) with thapsigargin, an endoplasmic reticulum (ER) Ca(2+) pump inhibitor, increased Pb(2+) uptake, while inhibition of CCE by La(3+) decreased influx. Parathyroid hormone-related peptide (PTHrP) stimulates the synthesis of Ca(2+)-binding proteins (CaBPs), as well as Ca(2+) transporters, during trophoblastic differentiation. Pretreatment for 72 h with PTHrP increased Pb(2+) uptake by undifferentiated Rcho-1 cells but had little effect on the quench in differentiated cells, probably due to their greater content of CaBPs which competed for Pb(2+)-binding with indo-1. This competition was most evident in differentiated cells when 1 microM Pb(2+) caused an initial quench, followed by a rise in fluorescence. This rise was not inhibited by thapsigargin, thereby ruling out sequestration into the ER and leaving complexation of Pb(2+) by CaBPs as the most plausible interpretation. We conclude that trophoblasts have the ability to clear Pb(2+) from the maternal circulation and deliver it to the fetus.  相似文献   

12.
We examined the effect of ginsenoside Rg1 or Rb1, the active ingredients of ginseng, on the release of endogenous glutamate from glutamatergic nerve terminals purified from rat cerebral cortex. Result showed that the Ca(2+)-dependent release of glutamate evoked by 4-aminopyridine was facilitated by ginsenoside Rg1 or Rb1 in a concentration-dependent manner. Sequential experiments reveal that ginsenoside Rg1 or Rb1-mediated facilitation of glutamate release (i) results from an enhancement of vesicular exocytosis; (ii) is not due to an alternation of synaptosomal excitability; (iii) is associated with an increase in Ca(2+) influx through presynaptic N- and P/Q-type voltage-dependent Ca(2+) channels; (iv) appears to involve a protein kinase A pathway. These results conclude that ginsenoside Rg1 or Rb1 exerts their presynaptic facilitatory effect, likely through the activation of protein kinase A, which subsequently enhances Ca(2+) entry to cause an increase in evoked glutamate release from rat cortical synaptosomes. This finding might provide important information regarding the action of ginseng in the central nervous system.  相似文献   

13.
Mechanisms of Na+ and Ca2+ influx into respiratory neurons during hypoxia   总被引:3,自引:0,他引:3  
Changes in intracellular Na+ and Ca2+ in inspiratory neurons of neonatal mice were examined by using ion-selective fluorescent indicator dyes SBFI and fura-2, respectively. Both [Na+]i and [Ca2+]i signals showed rhythmic elevations, correlating with the inspiratory motor output. Brief (2-3 min) hypoxia, induced initial potentiation of rhythmic transients followed by their depression. During hypoxia, the basal [Na+]i and [Ca2+]i levels slowly increased, reflecting development of an inward current (Im). By antagonizing specific mechanisms of Na+ and Ca2+ transport we found that increases in [Na+]i, [Ca2+]i and Im due to hypoxia are suppressed by CNQX, nifedipine, riluzole and flufenamic acid, indicating contribution of AMPA/kainate receptors, persistent Na+ channels, L-type Ca2+ channels and Ca2+-sensitive non-selective cationic channels, respectively. The blockers decreased also the amplitude of the inspiratory bursts. Modification of mitochondrial properties with FCCP and cyclosporine A decreased [Ca2+]i elevations due to hypoxia by about 25%. After depletion of internal Ca2+ stores with thapsigargin, the blockade of NMDA receptors, Na+/K+ pump, Na+/H+ and Na+/Ca2+ exchange, the hypoxic response was not changed. We conclude that slow [Na+]i and [Ca2+]i increases in inspiratory neurons during hypoxia are caused by Na+ and Ca2+ entry due to combined activation of persistent Na+ and L-type Ca2+ channels and AMPA/kainate receptors.  相似文献   

14.
High-threshold Ca(2+) channels and tetrodotoxin-resistant Na(+) channels are highly expressed in small dorsal root ganglion neurons. In acutely isolated rat dorsal root ganglion neurons, the effects of neomycin, one of the aminoglycoside antibiotics, on high-threshold Ca(2+) currents and tetrodotoxin-resistant Na(+) currents were examined using whole-cell patch recording. We showed for the first time that neomycin dose-dependently inhibited peak high-threshold Ca(2+) currents and peak tetrodotoxin-resistant Na(+) currents with half-maximal inhibitory concentrations at 3.69 microM (n=20) and 1213.44 microM (n=25), respectively. Inactivation properties of high-threshold Ca(2+) currents and activation properties of tetrodotoxin-resistant Na(+) currents were also affected by neomycin with reduction of excitability of small dorsal root ganglion neurons. Half-maximal inactivation voltage of high-threshold Ca(2+) currents was -45.56 mV before and -50.46 mV after application of neomycin (n=10). Half-maximal activation voltage of tetrodotoxin-resistant Na(+) currents was -19.93 mV before and -11.19 mV after administration of neomycin (n=15). These results suggest that neomycin can inhibit high-threshold Ca(2+) currents and tetrodotoxin-resistant Na(+) currents in small dorsal root ganglion neurons, which may contribute to neomycin-induced peripheral and central analgesia.  相似文献   

15.
The effect of the Na+/Ca(2+)-exchange inhibitor KB-R7943 was investigated in spinal cord dorsal column ischemia in vitro. Oxygen/glucose deprivation at 37 degrees C for 1 h causes severe injury even in the absence of external Ca2+. KB-R7943 was very protective in the presence and absence of external Ca2+ implicating mechanisms in addition to extracellular Ca2+ influx through Na+/Ca(2+)-exchange, such as activation of ryanodine receptors by L-type Ca2+ channels. Indeed, blockade of L-type Ca2+ by nimodipine confers a certain degree of protection of dorsal column against ischemia; combined application of nimodipine and KB-R7943 was not additive suggesting that KB-R7943 may also act on Ca2+ channels. KB-R7943 reduced inward Ba2+ current with IC50 = 7 microM in tsA-201 cells expressing Ca(v)1.2. Moreover, nifedipine and KB-R7943 both reduced depolarization-induced [Ca2+]i increases in forebrain neurons and effects were not additive. Nimodipine or KB-R7943 also reduced ischemic axoplasmic Ca2+ increase, which persisted in 0Ca2+/EGTA perfusate in dorsal column during ischemia. While KB-R7943 cannot be considered to be a specific Na+/Ca2+ exchange inhibitor, its profile makes it a very useful neuroprotectant in dorsal columns by: reducing Ca2+ import through reverse Na+/Ca2+ exchange; reducing influx through L-type Ca2+ channels, and indirectly inhibiting Ca2+ release from the ER through activation of ryanodine receptors.  相似文献   

16.
This study was designed to investigate the possible involvement of NADPH oxidase and the Na(+)/Ca(2+) exchanger in regulating membrane repolarisation and store-operated uptake of Ca(2+) by FMLP (1 microM)-activated human neutrophils. Diphenyleneiodonium chloride (DPI, 5-10 microM) and KB-R7943 (2.5-10 microM), inhibitors of NADPH oxidase and the reverse mode of the Na(+)/Ca(2+) exchanger respectively, were used as pharmacological probes. Transmembrane fluxes of Ca(2+), K(+) and Na(+) were determined radiometrically, while alterations in membrane potential and cytosolic Ca(2+) were evaluated using spectrofluorimetric procedures. DPI, added to the cells at the time of maximum FMLP-activated membrane depolarisation, accelerated the rates of both membrane repolarisation and influx of Ca(2+), while KB-R7943 effectively antagonised these processes. SKF 96365 (10 microM), an antagonist of store-operated Ca(2+) channels, abolished the influx of Ca(2+) into FMLP-activated neutrophils, but had no effects on membrane repolarisation, suggesting that the Na(+)/Ca(2+) exchanger is primarily involved in mediating membrane repolarisation, thereby facilitating uptake of Ca(2+) via store-operated channels. These observations are compatible with prominent negative and positive regulatory roles for NADPH oxidase and the Na(+)/Ca(2+) exchanger respectively in regulating the rates of membrane repolarisation and store-operated uptake of Ca(2+) by chemoattractant-activated neutrophils.  相似文献   

17.
Effect of unfractionated heparin (UFH), described as a cell-impermeant IP3 receptor antagonist, was studied on the capacitive Ca(2+) entry in non-permeabilized, intact cells, measuring the intracellular Ca(2+) levels using fluorescence microplate technique. Ca(2+) influx induced via Ca(2+) mobilization by histamine in Hela cells or evoked by store depletion with thapsigargin in RBL-2H3 cells was dose-dependently suppressed by UFH added either before or after the stimuli. UFH also prevented the spontaneous Ba(2+) entry indicating that the non-capacitive Ca(2+) channels may also be affected. In addition, UFH caused a significant and dose-dependent delay in Ca(2+), and other bivalent cation inflow after treatment of the cells with Triton X-100, but it did not diminish the amount of these cations indicating that UFH did not act simply as a cation chelator, but modulated the capacitive Ca(2+) entry possibly via store operated Ca(2+) channels (SOCCs). Inhibitory activities of UFH and 2-aminoethyl diphenyl borate on the capacitive Ca(2+) influx was found reversible, but the time courses of their actions were dissimilar suggesting distinct modes of action. It was also demonstrated using a fluorescence potentiometric dye that UFH had a considerable hyperpolarizing effect and could alter the changes of membrane potential during Ca(2+) influx after store depletion by thapsigargin. We presume that the hyperpolarizing property of this agent might contribute to the suppression of Ca(2+) influx. We concluded that UFH can negatively modulate SOCCs and also other non-capacitive Ca(2+) channels and these activities might also account for its multiple biological effects.  相似文献   

18.
There have been few reports on the mechanism(s) of action of oxethazaine (OXZ) despite its potent local anesthetic action. Generally, local anesthetics (LAs) not only inhibit Na(+) channels but also affect various membrane functions. In the present study, using PC12 cells as a nerve cell model, the effects of OXZ on intracellular Ca(2+) concentration ([Ca(2+)](i)) were examined in relation to cytotoxicity and dopamine release. [Ca(2+)](i) was determined by the quin2 method. In resting cells, (6-10)x10(-5)M OXZ produced lactate dehydrogenase leakage, which was Ca(2+)-dependent, inhibited by metal Ca(2+) channel blockers, and preceded by a marked increase in [Ca(2+)](i). Some other LAs showed no cytotoxicity at these concentrations. In K(+)-depolarized cells, however, lower concentrations of OXZ (10(-6)-10(-7)M), that had no effect on resting [Ca(2+)](i), inhibited both the dopamine release and the increase of [Ca(2+)](i) in parallel. The inhibitory potency against the [Ca(2+)](i) increase was in the order of nifedipine>OXZ approximately verapamil>diltiazem, and OXZ acted additively on the Ca(2+) channel blockers. OXZ showed the least effect on K(+)-depolarization as determined by bisoxonol uptake. OXZ also inhibited the increase in [Ca(2+)](i) induced by S(-)-BAY K 8644, a Ca(2+) channel agonist. These observations suggested that low concentrations of OXZ interact with L-type Ca(2+) channels. The biphasic effects of OXZ on Ca(2+) movement may be due to a unique chemical structure, and may participate in and complicate the understanding of the potent pharmacological and toxicological actions of OXZ.  相似文献   

19.
Previous studies have shown that N-methyl-D-aspartate (NMDA) receptor stimulation evokes Ca2+- and Na+-dependent burst firing in subthalamic nucleus (STN) neurons. Using whole-cell patch pipettes to record currents under voltage-clamp, we identified a time-dependent depolarization-activated inward current (DIC) that may underlie NMDA-induced burst firing in STN neurons in rat brain slices. Continuous superfusion with NMDA (20 microM) elicited a marked TTX-insensitive inward current when the membrane was depolarized to the level of -70 or -50 mV, from a holding potential of -100 mV. This current had a long duration, and its peak amplitude occurred at a test potential of -60 mV. DIC could not be evoked using the non-NMDA receptor agonist D,L-alpha-amino-3-hydroxy-5-methylisoxalone-4-propionic acid (AMPA). DIC was blocked by either intracellular BAPTA or by removal of extracellular Ca2+, but selective blockers of T-type (mibefradil), L-type (nifedipine) and N-type (omega-conotoxin GVIA) Ca2+ channels did not. Perfusing slices with a low extracellular concentration of sodium abolished the NMDA-induced DIC, implying that both Ca2+ and Na+ are necessary for the expression of DIC. Transient receptor potential (TRP) channel blockers flufenamic acid and SKF96365 severely reduced DIC amplitude, whereas NMDA-gated currents were either increased or were unchanged. These results suggest that the activation of NMDA receptors enhances a Ca2+-activated non-selective cation current that may be mediated by a member of the TRP channel family in STN neurons.  相似文献   

20.
We hypothesized that the histamine H(3)-receptor (H(3)R)-mediated attenuation of norepinephrine (NE) exocytosis from cardiac sympathetic nerves results not only from a Galpha(i)-mediated inhibition of the adenylyl cyclase-cAMP-PKA pathway, but also from a Gbetagamma(i)-mediated activation of the MAPK-PLA(2) cascade, culminating in the formation of an arachidonate metabolite with anti-exocytotic characteristics (e.g., PGE(2)). We report that in Langendorff-perfused guinea-pig hearts and isolated sympathetic nerve endings (cardiac synaptosomes), H(3)R-mediated attenuation of K(+)-induced NE exocytosis was prevented by MAPK and PLA(2) inhibitors, and by cyclooxygenase and EP(3)-receptor (EP(3)R) antagonists. Moreover, H(3)R activation resulted in MAPK phosphorylation in H(3)R-transfected SH-SY5Y neuroblastoma cells, and in PLA(2) activation and PGE(2) production in cardiac synaptosomes; H(3)R-induced MAPK phosphorylation was prevented by an anti-betagamma peptide. Synergism between H(3)R and EP(3)R agonists (i.e., imetit and sulprostone, respectively) suggested that PGE(2) may be a downstream effector of the anti-exocytotic effect of H(3)R activation. Furthermore, the anti-exocytotic effect of imetit and sulprostone was potentiated by the N-type Ca(2+)-channel antagonist omega-conotoxin GVIA, and prevented by an anti-Gbetagamma peptide. Our findings imply that an EP(3)R Gbetagamma(i)-induced decrease in Ca(2+) influx through N-type Ca(2+)-channels is involved in the PGE(2)/EP(3)R-mediated attenuation of NE exocytosis elicited by H(3)R activation. Conceivably, activation of the Gbetagamma(i) subunit of H(3)R and EP(3)R may also inhibit Ca(2+) entry directly, independent of MAPK intervention. As heart failure, myocardial ischemia and arrhythmic dysfunction are associated with excessive local NE release, attenuation of NE release by H(3)R activation is cardioprotective. Accordingly, this novel H(3)R signaling pathway may ultimately bear therapeutic significance in hyper-adrenergic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号