首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The actin gene (ACT) from the methylotrophic yeast Hansenula polymorpha was cloned and its structural feature was characterized. In contrast to the actin genes of other ascomycetous yeasts, which have only one large intron, the H. polymorpha ACT gene was found to be split by two introns. The H. polymorpha ACT introns were correctly processed in the heterologous host Saccharomyces cerevisiae despite appreciable differences in the splice site sequences. The promoter region of H. polymorpha ACT displayed two CCAAT motifs and two TATA-like sequences in a configuration similar to that observed in the S. cerevisiae actin promoter. A set of deleted H. polymorpha ACT promoters was exploited to direct expression of the bacterial hygromycin B resistance (hph) gene as a dominant selectable marker in the transformation of H. polymorpha. The resistance level of H. polymorpha transformants to the antibiotic was shown to be dependent on the integration copy number of the hph cassette. The selectivity of the hygromycin B resistance marker for transformants of higher copy number was remarkably increased with the deletion of the upstream TATA-like sequence, but not with the removal of either CCAAT motif, from the H. polymorpha promoter. The dosage-dependent selection system developed in this study should be useful for genetic manipulation of H. polymorpha as an industrial strain to produce recombinant proteins.  相似文献   

3.
Hansenula polymorpha uses maltase to grow on maltose and sucrose. Inspection of genomic clones of H. polymorpha showed that the maltase gene HPMAL1 is clustered with genes corresponding to Saccharomyces cerevisiae maltose permeases and MAL activator genes orthologues. We sequenced the H. polymorpha maltose permease gene HPMAL2 of the cluster. The protein (582 amino acids) deduced from the HPMAL2 gene is predicted to have eleven transmembrane domains and shows 39-57% identity with yeast maltose permeases. The identity of the protein is highest with maltose permeases of Debaryomyces hansenii and Candida albicans. Expression of the HPMAL2 in a S. cerevisiae maltose permease-negative mutant CMY1050 proved functionality of the permease protein encoded by the gene. HPMAL1 and HPMAL2 genes are divergently positioned similarly to maltase and maltose permease genes in many yeasts. A two-reporter assay of the expression from the HPMAL1-HPMAL2 intergenic region showed that expression of both genes is coordinately regulated, repressed by glucose, induced by maltose, and that basal expression is higher in the direction of the permease gene.  相似文献   

4.
5.
The Hansenula polymorpha GSH1/MET1 gene was cloned by complementation of glutathione-dependent growth of H. polymorpha gsh1 mutant isolated previously as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resistant and cadmium ion sensitive clone. The H. polymorpha GSH1 gene was capable of restoring cadmium ion resistance, MNNG sensitivity, normal glutathione level and cell proliferation on minimal media without addition of cysteine or glutathione, when introduced into the gsh1 mutant cells. It was shown that the H. polymorpha GSH1 gene has homology to the Saccharomyces cerevisiae MET1 gene encoding S-adenosyl-L-methionine uroporphyrinogen III transmethylase, responsible for the biosynthesis of sulfite reductase cofactor, sirohaem. The H. polymorpha GSH1/MET1 gene deletion cassette (Hpgsh1/met1::ScLEU2) was constructed and corresponding null mutants were isolated. Crossing data of the point gsh1 and null gsh1/met1 mutants demonstrated that both alleles were located to the same gene. The null gsh1/met1 mutant showed total growth restoration on minimal media supplemented with cysteine or glutathione as a sole sulfur source, but not with inorganic (sulfate, sulfite) or organic (methionine, S-adenosylmethionine) sources of sulfur. Moreover, both the point gsh1 and null gsh1/met1 mutants displayed increased sensitivity to the toxic carbon substrate methanol, formaldehyde, organic peroxide and cadmium ions.  相似文献   

6.
Saccharomyces cerevisiae SU50B and Hansenula polymorpha 8/2, both carrying a multicopy integrated guar alpha-galactosidase, have been cultivated in continuous cultures, using various mixtures of carbon sources and cultivation conditions. Both S. cerevisiae SU50B and H. polymorpha 8/2 are stable and produce high levels of extracellular alpha-galactosidase in continuous cultures for more than 500 h. For these expression systems the strong inducible promoter systems GAL7 and methanol oxidase, respectively, were used. The induction of alpha-galactosidase synthesis by galactose in SU50B is limited by the low galactose uptake. Apart from that, at high dilution rates, the glucose repression is substantial, and a maximal expression level of 28.6 mg of extracellular alpha-galactosidase.g (dry weight) of biomass-1 could be obtained. In H. polymorpha, the induction of alpha-galactosidase synthesis, in addition to methanol oxidase synthesis using formaldehyde, is very effective up to 42 mg of extracellular alpha-galactosidase.g (dry weight) of biomass-1. Productivities in terms of specific production rate enable a good comparison with those of other heterologous expression systems in the literature. The productivities found with S. cerevisiae SU50B and H. polymorpha, 3.25 and 5.5 mg of alpha-galactosidase.g of biomass-1.liter-1.h-1, respectively, rank among the highest reported in the literature. Enzyme production and secretion in H. polymorpha are more complex. A two-peaked optimum is found in enzyme production. No clear explanation of this phenomenon can be given.  相似文献   

7.
Laht S  Karp H  Kotka P  Järviste A  Alamäe T 《Gene》2002,296(1-2):195-203
Glucokinase gene (HPGLK1) was cloned from a methylotrophic yeast Hansenula polymorpha by complementation of glucose-phosphorylation deficiency in a H. polymorpha double kinase-negative mutant A31-10 by a genomic library. An open reading frame of 1416 nt encoding a 471-amino-acid protein with calculated molecular weight 51.6 kDa was characterized in the genomic insert of the plasmid pH3. The protein sequence deduced from HPGLK1 exhibited 55 and 46% identity with glucokinases from Saccharomyces cerevisiae and Aspergillus niger, respectively. The enzyme phosphorylated glucose, mannose and 2-deoxyglucose, but not fructose. Transformation of HPGLK1 into A31-10 restored glucose repression of alcohol oxidase and catalase in the mutant. Transformation of HPGLK1 into S. cerevisiae triple kinase-negative mutant DFY632 showed that H. polymorpha glucokinase cannot transmit the glucose repression signal in S. CEREVSIAE: synthesis of invertase and maltase in respective transformants was insensitive to glucose repression similarly to S. cerevisiae DFY568 possessing only glucokinase.  相似文献   

8.
An overview on glutathione in Saccharomyces versus non-conventional yeasts   总被引:5,自引:0,他引:5  
Glutathione (GSH: L-gamma-glutamyl-L-cysteinylglycine) is present in high concentrations up to 10 mM in yeast cells. Its very low redox potential (E'(o)=-240 mV for thiol disulfide exchange) gives this tripeptide the properties of a cellular redox buffer. In Saccharomyces cerevisiae and non-conventional yeasts (NCY), GSH may be involved in basic cellular functions such as the maintenance of mitochondrial and membrane integrity. GSH also assumes pivotal roles in (i) response to sulfur and nitrogen starvation; (ii) detoxification of endogenous toxic metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts Hansenula polymorpha, Candida boidinii and Kloeckera sp.; (iii) protection against oxidative stress provoked by exposure of the cells to reactive oxygen species including peroxides and hydroperoxides; (iv) detoxification of xenobiotics such as halogenated aromatics, alkylating agents and arsenite; (v) resistance to heavy-metal stress exemplified by the responses of S. cerevisiae and Schizosaccharomyces pombe to cadmium salts; (vi) yeast<-->mycelium transition in Candida and Aureobasidium sp.  相似文献   

9.
Spheroplasts of Hansenula polymorpha strain deficient in 2-isopropylmalate dehydrogenase have been shown to be transformed by the DNA of a hybrid plasmid pHRI, carrying the LEU2 gene from S. cerevisiae and 2.0 kilobase HindIII fragment of H. polymorpha genomic DNA. The frequency of transformants has reached 10(3) per 1 microgram of transforming DNA. Plasmid pHRI is maintained in transformants as an autonomous circular DNA molecule and is inherited by 1-2% fraction of cells from the population growing under the selective conditions. Transformation takes place under the same conditions that are required for spheroplast fusion. Thus, H. polymorpha becomes one more species of yeast susceptible to hybrid plasmid-mediated gene transfer in the process of DNA transformation.  相似文献   

10.
A wide-range yeast vector (CoMed) system has been applied to the comparative assessment of three different yeast platforms for the production of human interleukin-6. A vector equipped with an rRNA gene targeting sequence and an Arxula adeninivorans-derived LEU2 gene was used for simultaneous transformation of auxotrophic A. adeninivorans, Hansenula polymorpha and Saccharomyces cerevisiae strains. IL6 was expressed under control of the strong constitutive A. adeninivorans-derived TEF1 promoter, which is functional in all yeast species analyzed so far. Secreted IL-6 was found to be correctly processed from an MFalpha1-IL6 precursor in A. adeninivorans only, whereas N-terminally truncated proteins were observed in H. polymorpha and S. cerevisiae.  相似文献   

11.
B Distel  M Veenhuis    H F Tabak 《The EMBO journal》1987,6(10):3111-3116
Saccharomyces cerevisiae is unable to grow on methanol because it lacks the enzymes required for its metabolism. To study the possibility of whether or not the methanol oxidation pathway of Hansenula polymorpha can be transferred to S. cerevisiae, the gene coding for alcohol oxidase, a peroxisomal homo-octameric flavoprotein, was introduced into S. cerevisiae. Transformed cells contain varying amounts of alcohol oxidase depending on the plasmid used. Immunocytochemical experiments indicate that the protein is imported into peroxisomes, whether organelle proliferation is induced or not. Cells lack alcohol oxidase activity however, and only the monomeric, non-functional, form of the protein is found. These findings indicate that the H. polymorpha peroxisomal targeting signal of alcohol oxidase is recognized in S. cerevisiae and protein monomers are imported.  相似文献   

12.
The genes encoding pro-carboxypeptidase Ys (pro-CPYs) from Saccharomyces cerevisiae and Hansenula polymorpha were cloned and expressed in Escherichia coli. Most of the expressed pro-CPY was present in the form of inclusion bodies, accounting for about 35% of the total cellular protein. The inclusion bodies solubilized in 6 M guanidinum chloride were renatured by dilution 1:60 into renaturation buffer. Further refolding and activation were followed by the addition of 60 g ml–1 proteinase K into the diluted solution. The specific activities of in vitro activated S. cerevisiae and H. polymorpha CPYs were found to be similar, representing about 25% of that of native S. cerevisiae CPY.  相似文献   

13.
14.
Using an optimized transformation protocol we have studied the possible interactions between transforming plasmid DNA and the Hansenula polymorpha genome. Plasmids consisting only of a pBR322 replicon, an antibiotic resistance marker for Escherichia coli and the Saccharomyces cerevisiae LEU2 gene were shown to replicate autonomously in the yeast at an approximate copy number of 6 (copies per genome equivalent). This autonomous behaviour is probably due to an H. polymorpha replicon-like sequence present on the S. cerevisiae LEU2 gene fragment. Plasmids replicated as multimers consisting of monomers connected in a head-to-tail configuration. Two out of nine transformants analysed appeared to contain plasmid multimers in which one of the monomers contained a deletion. Plasmids containing internal or flanking regions of the genomic alcohol oxidase gene were shown to integrate by homologous single or double cross-over recombination. Both single- and multi-copy (two or three) tandem integrations were observed. Targeted integration occurred in 1-22% of the cases and was only observed with plasmids linearized within the genomic sequences, indicating that homologous linear ends are recombinogenic in H. polymorpha. In the cases in which no targeted integration occurred, double-strand breaks were efficiently repaired in a homology-independent way. Repair of double-strand breaks was precise in 50-68% of the cases. Linearization within homologous as well as nonhomologous plasmid regions stimulated transformation frequencies up to 15-fold.  相似文献   

15.
Peroxisomal alcohol oxidase (AO) from Hansenula polymorpha is inactive and partially mislocalized to the cytosol upon synthesis in Saccharomyces cerevisiae. Co-production with H. polymorpha pyruvate carboxylase (HpPyc1p) resulted in AO activation, but did not improve import into peroxisomes. We show that import of AO mediated by S. cerevisiae Pex5p is strictly dependent on the peroxisomal targeting signal 1 (PTS1) of AO and independent of HpPyc1p. In contrast, HpPex5p-mediated sorting of AO into S. cerevisiae peroxisomes is independent of the PTS1, but requires an alternative PTS that is only formed when HpPyc1p is co-produced and most likely involves folding and co-factor binding to AO.  相似文献   

16.
The methylotrophic yeast Hansenula polymorpha CBS4732 leu2 detoxifies electrophilic xenobiotics by glutathione (GSH)-dependent accumulation in vacuoles, as shown by fluorescence microscopy. GSH-dependent and GSH-independent export of xenobiotic derivatives were also demonstrated by high-performance liquid chromatography (HPLC). Conjugates of GSH and N-acetylcysteine with monobromobimane and N-[1-pyrene]maleimide were observed among the HPLC fractions, along with unidentified derivatives.  相似文献   

17.
Alcohol oxidase (AO) expressed in transformed oleic acid-grown Saccharomyces cerevisiae, accumulated into microbodies to up to 8% of the total protein content of the organelles. This led to a small increase in volume fraction of the organelles, but not in their number. Most of the AO protein was present in large aggregates in the cytosol. The AO synthesized was inactive, irrespective of its subcellular localization and did not contain FAD. When the same AO gene was expressed in fused protoplasts of transformed S. cerevisiae and Hansenula polymorpha, the enzyme was properly assembled and activated in H. polymorpha microbodies.  相似文献   

18.
The use of yeast as a host for heterologous expression of proteins that are normally derived from animal tissue is a promising way to ensure defined products that are devoid of potential harmful animal side products. Here we report on the production and secretion of a custom-designed gelatin, Hu3-His8, by the yeast Hansenula polymorpha. We observed that Hu3-His8 was poorly secreted by the heterologous Saccharomyces cerevisiae invertase secretion signal. In contrast, the S. cerevisiae mating factor alpha prepro sequence efficiently directed secretion into the culture medium. However, at higher copy numbers, intracellular accumulation of Hu3-His8 precursors occurred. Overproduction of Erv29p, a protein required for packaging of the glycosylated pro-alpha factor into COPII vesicles, did not improve gelatin secretion in the multicopy strain. Previously, H. polymorpha was reported to hydroxylate proline residues in gelatinous sequences. In contrast, we were unable to detect hydroxyprolines in the secreted Hu3-His8. Also, we failed to identify a gene encoding prolyl-4-hydroxylase in the H. polymorpha genome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号