首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
甘孜-理塘蛇绿混杂岩带特征及其构造意义   总被引:2,自引:1,他引:2  
本文系统总结了甘孜-理塘蛇绿混杂岩带的地质学、岩石学和地球化学特征。该蛇绿岩由变质橄榄岩、堆积岩、席状岩墙、枕状玄武岩与块状玄武岩和放射虫硅质岩组成。岩石地球化学特征表明,蛇绿岩形成于洋脊扩张环境。该蛇绿混杂岩带是义敦碰撞造山带大地构造相中的弧前混杂带相。  相似文献   

2.
对阿尔金南缘构造带西段辉绿岩墙群的岩石学和地球化学的详细研究表明,该区辉绿岩墙群为拉斑系列岩石,其主量元素以中等TiO2(1.19%~1.59%)、高MgO(5.51%~7.88%)、贫K2O(0.04%~0.84%)和P2O5(0.10%~0.20%)、Na2OK2O为特征;高场强元素(HFSE)丰度特征显示其为E-MORB型或过渡型玄武岩质岩石;稀土元素总量相对较高,轻重稀土元素分馏不显著[(La/Yb)N=1.93~3.61,LREE/HREE=3.01~4.10],在球粒陨石标准化配分模式图上呈略富集型.结合玄武岩构造环境判别图解综合分析推测,它们可能形成于一种裂谷向MORB环境过渡的构造环境,即初始小洋盆构造环境.  相似文献   

3.
内蒙古西乌旗梅劳特乌拉蛇绿岩的识别   总被引:9,自引:2,他引:7  
新识别出的内蒙古西乌旗梅劳特乌拉蛇绿岩位于中朝板块与西伯利亚板块之间的兴蒙造山带北部,从空间展布看,为二连浩特-贺根山蛇绿岩带的东延部分,通过对梅劳特乌拉蛇绿岩进行详细的野外地质调查和岩石学、地球化学、年代学的研究,发现梅劳特乌拉蛇绿岩带呈ENE-NE向展布,宽约6~11km,延伸约24km,蛇绿岩各单元出露较齐全,岩性主要为蛇纹石化方辉辉橄岩、层状-块状辉长岩、辉绿岩脉(墙)、枕状玄武岩、辉斑玄武岩、及硅质岩。蛇纹石化方辉辉橄岩具有低SiO 2、高MgO,稀土配分模式显示宽缓的U型,具SSZ(supra-subduction zone)型蛇绿岩的地幔橄榄岩特征。枕状玄武岩和辉绿岩脉(墙)具低K2O(平均0.82%)和TiO2(0.8%~1.2%)的特征,球粒陨石标准化显示LREE弱亏损的平坦型;微量元素MORB标准化蛛网图显示:枕状玄武岩和辉绿岩脉(墙)的大离子亲石元素Sr、K、Rb和Ba含量明显富集,而高场强元素Nb、Th、Ta、Zr、Ti明显亏损,为典型的SSZ构造背景成因的熔岩特征。获得块状辉长岩的LA-ICP-MS锆石U-Pb年龄为308.5±2.2Ma,据此确定梅劳特乌拉蛇绿岩形成于晚石炭世,为约束兴蒙造山带的构造演化提供了新佐证。  相似文献   

4.
内蒙古西乌珠穆沁旗迪彦庙蛇绿岩的识别   总被引:8,自引:5,他引:3  
新识别出的内蒙古西乌珠穆沁旗迪彦庙蛇绿岩位于中朝古板块与西伯利亚古板块之间的兴蒙造山带中部。通过对迪彦庙蛇绿岩进行详细的野外地质调查和岩石学、岩石地球化学的研究,发现迪彦庙蛇绿岩由孬来可吐和白音布拉格两个蛇绿岩带组成,各带宽约3km,延伸约30km,蛇绿岩各单元出露齐全。岩性由下到上主要为蛇纹石化方辉橄榄岩、层状-块状辉长岩、斜长岩、细碧岩、枕状玄武岩、角斑岩-石英角斑岩及硅质岩。蛇纹石化方辉橄榄岩稀土配分模式具SSZ型蛇绿岩的地幔橄榄岩特征;枕状玄武岩具岛弧拉斑玄武岩(IAT)特征;硅质岩的Al2O3/(Al2O3+Fe2O3)比值显示大陆边缘沉积环境特征。  相似文献   

5.
阿尔金山是青藏高原的北缘边界,控制了青藏高原北部乃至中国西部的大地构造-地貌格局。通过野外地质调查,在阿尔金山北东东向构造带中段发现了枕状玄武岩,这对研究和探讨阿尔金山乃至青藏高原北缘边界的形成及构造演化将提供重要线索。地球化学测试表明,枕状玄武岩表现为低Si O2、A12O3、P2O5和(Na2O+K2O),显示亚碱性玄武岩和安山岩/玄武岩之间的过渡类型,其中两个样品的Si含量较低,Fe、Ti含量较高(TFe O12%,Ti O22%,TFe O/Mg O1.75),显示出具有Fe-Ti玄武岩特征。稀土元素含量(37.34×10–6~42.14×10–6)、稀土配分模式和微量元素比值,以及Ti/100-Zr-Y×3、Ti/100-Zr-Sr/2、Zr/4-2×Nb-Y图解均表明该枕状玄武岩具有正常大洋中脊玄武岩(N-MORB)的特征;而与典型正常洋中脊玄武岩相比,样品低度富集大离子亲石元素,亏损Zr、Hf和Ti等高场强元素,在Th/Nb-Ce/Nb图中,所有样品落入弧后盆地玄武岩范围内,显示出弧后盆地构造环境。结合北东东向构造带内相关镁铁-超镁铁岩的特征,推测新发现的枕状玄武岩形成于远离海沟的弧后盆地内具有扩张脊的构造环境,其岩浆源区应为一个类似于N-MORB的亏损地幔。通过与阿尔金北缘东西向红柳沟—拉配泉构造带内出露枕状玄武岩的地球化学特征相对比,显示出两者具有完全不同的岩浆源区和构造环境,但与柴北缘地区的早古生代蛇绿岩具有相似的构造环境及岩浆源区,推测阿尔金山北东东向构造带内的枕状玄武岩可能是柴北缘古生代蛇绿岩套的一部分,后遭受阿尔金断裂带左旋走滑运动的构造肢解与拖拽,最终残留在北东东向阿尔金构造带内。  相似文献   

6.
发育在我国北部的古亚洲洋构造域和西南部的特提斯构造域是中国境内最重要的两个构造体系,有关这两个构造域的地幔地球化学特征是揭示它们的演化与交接关系的重要课题之一。本文选择发育在新疆西准噶尔地区达拉布特蛇绿岩带中阿克巴斯套和大棍的枕状玄武岩进行了系统的岩石学和地球化学与Sr-Nd-Pb同位素地球化学研究,结果表明,达拉布特蛇绿岩带中枕状玄武岩具有N-MORB和E-MORB特征,可能形成于大洋中脊环境。岩石的~(87)Sr/~(86)Sr为0.682112~0.706040之间;~(143)Nd/~(144)Nd为0.512713~0.512879,ε_(Nd)(t)= 2.8~ 5.1,~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb的变化范围分别是18.341~20.085、15.541~15.651和38.292~40.534。将达拉布特玄武岩的微量元素特征比值、Nd-Pb同位素等与印度洋MORB和太平洋与北大西洋MORB,以及已知的特提斯和古亚洲洋地幔域进行对比表明,达拉布特蛇绿岩单元内MORB型玄武岩与特提斯构造域特蛇绿岩单元内MORB型玄武岩同位素特征一致,都显示了印度洋型的MORB特征。这意味着位于现今新疆西准噶尔地区的古亚洲洋地幔域没有显示出与特提斯不同的典型的太平洋和北大西洋的地球化学特征。  相似文献   

7.
对北阿尔金蛇绿混杂岩带中红柳泉剖面的枕状玄武岩进行了岩石地球化学研究,主元素具有高钛高钠、低铝低钾的特点.其中SiO2含量为43.34%~52.55%,Na2O含量为3.97%~7.36%,K2O含量为0.27%~0.94%.TiO2含量为2.13%~5.49%,Al2O3含量为9.02%~13.77%,显示出细碧岩的地球化学特征.微量元素配分模式类似于洋岛或海山玄武岩,不同于洋中脊玄武岩.综合考虑剖面上出现的岩石组合,推测玄武岩形成于弧后盆地环境.  相似文献   

8.
内蒙古温其根乌兰蛇绿混杂岩是内蒙古索伦山-苏左旗-锡林浩特蛇绿岩带的西段部分,岩石组合包括枕状玄武岩、蛇纹岩、菱镁岩、硅质岩、浅变质粉砂质碎屑岩、碳酸盐岩等,岩石呈大小不等的构造岩块产出。枕状玄武岩具高Na2O、低K2O,富集Th、Ta、Nb,亏损K、Sr、Rb、Yb等元素,∑REE含量低,δEu=1.22~1.28,显示正Eu异常等大洋中脊玄武岩特征。LAMC-ICP-MS锆石U-Pb年龄为475.8±1.6Ma,为研究华北板块北缘的大地构造演化提供了新的证据。  相似文献   

9.
云南新平县双沟蛇绿岩的初步研究   总被引:17,自引:3,他引:17  
双沟蛇绿岩由基底岩石、辉长—辉绿岩和玄武岩三部分组成。岩相学和地球化学研究表明,双沟斜长二辉橄榄岩中存在地幔交代作用的证据,属于浸染橄榄岩(impregnated peridotite)。蛇绿岩岩石组合中缺少超镁铁质堆晶岩和席状岩墙群,而辉绿岩和玄武岩的化学成分与MORB相拟,表明双沟蛇绿岩的形成机制与大洋中脊环境类似,但岩浆房很小,扩张速度缓慢,推测相当于哀牢山古特提斯小洋盆扩张早期的裂谷阶段的产物。  相似文献   

10.
藏东左贡地区碧土蛇绿岩:古特提斯主洋盆的地质记录   总被引:2,自引:8,他引:2  
吴根耀 《地质通报》2006,25(6):685-693
藏东碧土一带的玉曲流域保存有丰富的古特提斯主洋盆的地质记录,包括洋底、海山和大陆边缘的火山-沉积岩.蛇绿岩由超镁铁岩、辉长岩、辉绿岩(席状岩墙群的残块)和玄武岩等组成.岩石化学特征表明其属低钾的大洋拉斑玄武岩,形成的构造背景是大洋中脊,稀土配分型式和部分微量元素指示碧土洋盆以P-型MORB和N-型MORB同时发育为特征.洋盆发育到石炭纪时达到鼎盛,于二叠纪和晚三叠世经历了2次消减.碧土缝合线南延是滇西的昌宁-孟连缝合线,西北延则接青海南部的各拉丹冬和藏北的龙木错-双湖缝合线,代表消失了的古特提斯主洋盆.  相似文献   

11.
In ophiolites and in present-day oceanic crust formed at fast spreading ridges, oceanic plagiogranites are commonly observed at, or close to the base of the sheeted dike complex. They can be produced either by differentiation of mafic melts, or by hydrous partial melting of the hydrothermally altered sheeted dikes. In addition, the hydrothermally altered base of the sheeted dike complex, which is often infiltrated by plagiogranitic veins, is usually recrystallized into granoblastic dikes that are commonly interpreted as a result of prograde granulitic metamorphism. To test the anatectic origin of oceanic plagiogranites, we performed melting experiments on a natural hydrothermally altered dike, under conditions that match those prevailing at the base of the sheeted dike complex. All generated melts are water saturated, transitional between tholeiitic and calc-alkaline, and match the compositions of oceanic plagiogranites observed close to the base of the sheeted dike complex. Newly crystallized clinopyroxene and plagioclase have compositions that are characteristic of the same minerals in granoblastic dikes. Published silicic melt compositions obtained in classical MORB fractionation experiments also broadly match the compositions of oceanic plagiogranites; however, the compositions of the coexisting experimental minerals significantly deviate from those of the granoblastic dikes. Our results demonstrate that hydrous partial melting is a likely common process in the root zone of the sheeted dike complex, starting at temperatures exceeding 850°C. The newly formed melt can either crystallize to form oceanic plagiogranites or may be recycled within the melt lens resulting in hybridized and contaminated MORB melts. It represents the main MORB crustal contamination process. The residue after the partial melting event is represented by the granoblastic dikes. Our results support a model with a dynamic melt lens that has the potential to trigger hydrous partial melting reactions in the previously hydrothermally altered sheeted dikes. A new thermometer using the Al content of clinopyroxene is also elaborated.  相似文献   

12.
The Late Ordovician Solund-Stavfjord ophiolite in western Norway represents a remnant of the Iapetus oceanic lithosphere that developed in a Caledonian marginal basin. The ophiolite contains three structural domains that display distinctively different crustal architecture that reflects the mode and nature of magmatic and tectonic processes operated during the multi-stage seafloor spreading evolution of this marginal basin. Domain I includes, from top to bottom, an extensive extrusive sequence, a transition zone consisting of dike swarms with screens of pillow breccias, a sheeted dike complex, and plutonic rocks composed mainly of isotropic gabbro and microgabbro. Extrusive rocks include pillow lavas, pillow breccias, and massive sheet flows and are locally sheared and mineralized, containing epidosites, sulfide-sulfate deposits, Fe-oxides, and anhydrite veins, reminiscent of hydrothermal alteration zones on the seafloor along modern mid-ocean ridges. A fossil lava lake in the northern part of the ophiolite consists of a >65-m-thick volcanic sequence composed of a number of separate massive lava units interlayered with pillow lavas and pillow breccia horizons. The NE-trending sheeted dike complex contains multiple intrusions of metabasaltic dikes with one- and two-sided chilled margins and displays a network of both dike-parallel normal and dike-perpendicular oblique-slip faults of oceanic origin. The dike-gabbro boundary is mutually intrusive and represents the root zone of the sheeted dike complex. The internal architecture and rock types of Domain I are analogous to those of intermediate-spreading oceanic crust at modern mid-ocean ridge environments. The ophiolitic units in Domain II include mainly sheeted dikes and plutonic rocks with a general NW structural grain and are commonly faulted against each other, although primary intrusive relations between the sheeted dikes and the gabbros are locally well preserved. The exposures of this domain occur only in the northern and southern parts of the ophiolite complex and are separated by the ENE-trending Domain III, in which isotropic to pegmatitic gabbros and dike swarms are plastically deformed along ENE-striking sinistral shear zones. These shear zones, which locally include fault slivers of serpentinite intrusions, are crosscut by N20°E-striking undeformed basaltic dike swarms that contain xenoliths of gabbroic material. The NW-trending sheeted dike complex in the northern part of Domain II curves into an ENE orientation approaching Domain III in the south. The anomalous nature of deformed crust in Domain III is interpreted to have developed within an oceanic fracture zone or transform fault boundary.REE chemistry of representative extrusive and dike rocks from all three domains indicates N- to E-MORB affinities of their magmas with high Th/Ta ratios that are characteristic of subduction zone environments. The magmatic evolution of Domain I encompasses closed-system fractional crystallization of high-Mg basaltic magmas in small ephemeral chambers, which gradually interconnected to form large chambers in which mixing of primary magmas with more evolved and fractionated magma caused resetting of magma compositions through time. The compositional range from high-Mg basalts to ferrobasalts within Domain I is reminiscent of modern propagating rift basalts. We interpret the NE-trending Domain I as a remnant of an intermediate-spread rift system that propagated northeastwards (in present coordinate system) into a pre-existing oceanic crust, which was developed along the NW-trending doomed rift (Domain II) in the marginal basin. The N20°E dikes laterally intruding into the anomalous oceanic crust in Domain III represent the tip of the rift propagator. The inferred propagating rift tectonics of the Solund-Stavfjord ophiolite is similar to the evolutionary history of the modern Lau back-arc basin in the SW Pacific and suggests a complex magmatic evolution of the Caledonian marginal basin via multi-stage seafloor spreading tectonics.  相似文献   

13.
The Waziristan Ophiolite is located in the suture zone between the Indian Plate to the east and Afghan Block to the west. It is highly dismembered and divisible into three main sheets or nappes, which from east to west are: the Vezhda Sar Nappe, entirely comprised of pillow basalts; the Boya Nappe, made up of ophiolitic melange with an intact section in its basal part; and the Datta Khel Nappe, consisting mainly of sheeted dykes with smaller proportions of other components. Faunal evidence suggests that the ophiolite is of Tithonian-Valanginian age. It was thrust over the Mesozoic shelf-slope sediments of the Indian Plate to the east during the Paleocene and is unconformably overlain by sedimentary rocks of Early to Middle Eocene age to the west. Beside the sheeted dykes, best exposed in the hanging wall of the Datta Khel Thrust ENE of Datta Khel, the ophiolite also contains isolated dykes. These are doleritic and basaltic in composition. The dykes contain high Na2O contents and high FeOt/MgO and LILE/HFSE ratios, and low TiO2 (<0.1 wt%) and K2O contents. Non-depletion of Nb and high LILE/HFSE ratio negate, respectively, an island-arc or mid-ocean ridge setting for these dykes. Enrichment in the LILE suggests the involvement of a crustal component driven by fluids along the subduction zone. Several geochemical parameters suggest that the dykes of Waziristan Ophiolite have transitional characteristics between mid-ocean ridge basalt and island-arc tholeiite. It is therefore proposed that these dykes may have originated in a back-arc basin tectonic setting.  相似文献   

14.
A 100–4000 m wide and 15 km long dike swarm, consisting of basalt and dolerite, occurs at the base of the Thelichi Formation in the Kohistan paleo-island arc terrane, north Pakistan. The dikes contain hornblende (altered from diopsidic-augite), diopsidic-augite (relics; ophitic to subophitic texture), chlorite, epidote, sphene, apatite, zircon, ilmenite, titanomagnetite and magnetite. The geochemistry reveals two groups of dikes: (1) Higher TiO2 (2.74–3.50 wt%), Na2O, Fe2O3 and lower Al2O3 (12.65–14.16 wt%) and MgO (3.73–5.04 wt%); (2) Lower TiO2 (1.24–2.05 wt%), Na2O, Fe2O3 and higher Al2O3 (14.02–16.52 wt%) and MgO (3.98–7.52 wt%). The MgO contents (3.73–7.52-wt%) show a variation in the dikes from relatively primitive to more evolved compositions. The dikes contain high amounts of both LILE and HFSE. The major, trace and rare-earth elements data confirm the MORB affinity and the back-arc basin origin of the dike swarm. The NW–SE orientation of the dike swarm and its 134 ± 3 Ma K–Ar age suggest the spreading axis of the back-arc basin in the Early Cretaceous.  相似文献   

15.
The Xinlin ophiolite in NE China is generally considered to mark the suture between the Erguna and Xing'an blocks. Compared with the Maihantewula ophiolite and Jifeng‐Gaxian ophiolite in the southern and central parts of the Xinlin–Xiguitu suture zone, the Xinlin ophiolite in the northern part of the suture has not been as thoroughly investigated. Many studies acknowledge the indicators of the Xinlin ophiolite as a suture, but detailed studies of this unit are scarce. In the present work, we provide the geochemical data to constrain the origin of the gabbros in Xinlin ophiolites. The gabbros from the Xinlin ophiolites are texturally heterogeneous, ranging from fine‐grained aplitic to coarse‐grained pegmatitic. The fine‐grained gabbros have flat to slightly enriched LREE patterns, which are geochemically comparable to transitional (T‐MORB) and enriched mid‐ocean ridge basalt (E‐MORB). The pegmatite gabbros exhibit slightly LREE‐depleted patterns, similar to typical N‐MORB that derived from a depleted mantle source. Generally, gabbros from the Xinlin ophiolites are MORB‐like, but also have some arc characteristics such as high Th and low Ta concentrations. Such features is typical in Supra‐subduction zone (SSZ) type ophiolites. Our data, combined with other regional results, suggest that the geochemical signatures of the Xinlin gabbros that vary between arc‐like and MORB‐like were possibly indicative of their derivation from a subduction‐modified depleted mantle.  相似文献   

16.
The Mammoth Peak sheeted intrusive complex formed in the interior of a ~7–10 km deep magma chamber, specifically in the Half Dome granodiorite of the Tuolumne batholith, central Sierra Nevada, CA (USA). The sheets consist of fractionated melts with accumulated hornblende, biotite, magnetite, titanite, apatite, and zircon. The accumulation, especially of titanite, had a profound effect on minor and trace elements (Nb, Ta, Ti, REE, U, Th, P, Zr, Hf, etc.), increasing their contents up to five to six times. Our thermal–mechanical modeling using the finite element method shows that cooling-generated tensile stresses resulted in the inward propagation of two perpendicular sets of dilational cracks in the host granodiorite. We interpret the sheeted complex to have formed by a crack-seal mechanism in a high strength, crystal-rich mush, whereby outward younging pulses of fractionated magma were injected into these syn-magmatic cracks at the margin of an active magma chamber. Thermal–mechanical instabilities developed after the assembly of the sheeted complex, which was then overprinted by late ~NW–SE magmatic foliation. This case example provides a cautionary note regarding the interpretation that sheeted zones in large granitoid plutons imply a diking mechanism of growth because the sheeted/dike complexes in plutons (1) may display inverse growth directions from the growth of the overall intrusive sequence; (2) need not record initial chamber construction and instead may reflect late pulsing of magma within an already constructed magma chamber; (3) have an overprinting magmatic fabric indicating the continued presence of melt after construction of sheeted complexes and thus a prolonged thermal history as compared to dikes; and (4) because the scale of the observed sheeted complexes may be small (<1%) in comparison to large homogenous parts of plutons, in which there is no evidence for sheeting or diking. Thus, where extensive dike complexes in plutons are absent, such as in much of the Tuolumne batholith, the application of an incremental diking model to explain chamber construction is at best speculative.  相似文献   

17.
西藏1∶5万班戈县西南地区四幅区调成果与展望   总被引:1,自引:0,他引:1       下载免费PDF全文
西藏1∶5万班戈县西南地区四幅区域地质矿产调查为青藏专项地质调查项目。该项目取得的主要成果为:1发现了区内寒武系火山岩呈角度不整合覆盖于念青唐古拉群之上,其内部划分为3个岩性段;新建了上寒武统他多雄组。2对下奥陶统扎扛组进行了解体;新建了芙蓉统龙郊组。3通过详细的地质填图,在永珠蛇绿混杂岩带中新发现一套沉积混杂岩,认为该混杂岩区域延伸稳定;新建了晚侏罗世索尔岩组。4对蛇绿岩填图单元进行了解体,由超镁铁质岩、辉长岩、席状岩墙群、枕状玄武岩岩片、放射虫硅质岩组成,新建了晚侏罗世永珠蛇绿岩群。5确定了念青唐古拉群,新识别出的变质花岗岩形成时代为中新元古代,为研究古印度地盾北缘罗迪尼亚大陆形成期和裂解期的构造热事件提供了新资料。  相似文献   

18.
新化高桥玄武质富钛古火山岩研究   总被引:1,自引:0,他引:1  
刘士奇 《湖南地质》1993,12(4):213-216
高桥玄武质火山岩是一个化学成分独特的富钛基性火山岩。属震旦纪海底喷发的拉斑玄武岩,化学成分以富含TiO_2、MgO、Fe_2O_3+FeO特征。本文通过多方论证后指出:伴生的变辉绿岩属火山颈相,Ti的富集是蚀变作用的结果。  相似文献   

19.
WALLACE  PAUL J. 《Journal of Petrology》2002,43(7):1311-1326
Submarine pillow basalts (34 Ma) recovered from the NorthernKerguelen Plateau at ODP Site 1140 contain abundant unalteredglass, providing the first opportunity to measure the volatilecontents of tholeiitic basaltic magmas related to the Kerguelenmantle plume. The glasses have La/Sm and Nb/Zr ratios that varyfrom values similar to Southeast Indian Ridge (SEIR) MORB (Unit1), to slightly more enriched (Unit 6), to values transitionalbetween SEIR MORB and basaltic magmas formed by melting of theKerguelen plume (Units 2 and 3). Volatile contents for glassesin Units 1 and 6 are similar to depleted mid-ocean ridge basalt(MORB) values (0·25–0·27 wt % H2O, 1240–1450ppm S, 42–54 ppm Cl). In contrast, H2O contents are higherfor the enriched glasses (Unit 2, 0·44 wt % H2O; Unit3, 0·69 wt %), as are S (1500 ppm) and Cl (146–206ppm). Cl/K ratios for all glasses are relatively low (0·03–0·04),indicating that assimilation of hydrothermally altered materialdid not occur during shallow-level crystallization. H2O/Ce forthe enriched glasses (Units 2 and 3) is significantly lowerthan Pacific and South Atlantic MORB values, suggesting thatlow H2O/Ce may be an inherent characteristic of the Kerguelenplume source. Vapor saturation pressures calculated using theH2O and CO2 contents of the glasses indicate that  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号