首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crucial role of the thymus in immunological tolerance has been demonstrated by establishing that T cells are positively selected to express a specificity for self major histocompatibility complex (MHC), and that those T cells bearing receptors potentially reactive to self antigen fragments, presumably presented by thymic MHC, are selected against. The precise mechanism by which tolerance is induced and the stage of T-cell development at which it occurs are not known. We have now studied T-cell tolerance in transgenic mice expressing a T-cell receptor with double specificities for lymphocytic choriomeningitis virus (LCMV)-H-2Db and for the mixed-lymphocyte stimulatory (MIsa) antigen. We report that alpha beta TCR transgenic mice tolerant to LCMV have drastically reduced numbers of CD4+CD8+ thymocytes and of peripheral T cells carrying the CD8 antigen. By contrast, tolerance to MIsa antigen in the same alpha beta TCR transgenic MIsa mice leads to deletion of only mature thymocytes and peripheral T cells and does not affect CD4+CD8+ thymocytes. Thus the same transgenic TCR-expressing T cells may be tolerized at different stages of their maturation and at different locations in the thymus depending on the antigen involved.  相似文献   

2.
3.
The receptors found on most T lymphocytes bind to antigen presented on major histocompatibility complex proteins and consist of dimers of alpha- and beta-polypeptides associated with the invariant CD3 complex. A fully competent immune system requires a diverse array of T-cell antigen receptors (TCRs) with different specificities. This diversity is generated by rearrangement of TCR alpha- and beta-chain gene segments within the thymus where the receptors are first expressed. Any cells carrying self-reactive receptors must be eliminated, suppressed or inactivated so that destructive autoimmunity is avoided. Recently, compelling evidence has shown that one process involved in producing such self-tolerance is clonal deletion of autoreactive cells within the thymus by an as-yet-undefined mechanism. Here we show that engaging the CD3/TCR complex of immature mouse thymocytes with anti-CD3 antibodies produces DNA degradation and cell death through the endogenous pathway of apoptosis. Activation of this process in immature T cells by the binding of the TCR to self-antigens may therefore be the mechanism which produces clonal deletion and consequently self-tolerance.  相似文献   

4.
R H Seong  J W Chamberlain  J R Parnes 《Nature》1992,356(6371):718-720
Mature T cells express either CD4 or CD8 on their surface. Most helper T cells express CD4, which binds to class II major histocompatibility complex (MHC) proteins, and most cytotoxic T cells express CD8, which binds to class I MHC proteins. In the thymus, mature CD4+CD8- and CD4-CD8+ T cells expressing alpha beta T-cell antigen receptors (TCR) develop from immature thymocytes through CD4+CD8+ alpha beta TCR+ intermediates. Experiments using mice transgenic for alpha beta TCR suggest that the specificity of the TCR determines the CD4/CD8 phenotype of mature T cells. These results, however, do not indicate how a T cell differentiates into the CD4 or CD8 lineage. Here we show that the CD4 transmembrane region and/or cytoplasmic tail mediates the delivery of a specific signal that directs differentiation of T cells to a CD4 lineage. We generated transgenic mice expressing a hybrid molecule composed of the CD8 alpha extracellular domains linked to the CD4 transmembrane region and cytoplasmic tail. We predicted that this hybrid molecule would bind to class I MHC proteins through the extracellular domains but deliver the intracellular signals characteristic of CD4. By crossing our transgenic mice with mice expressing a transgenic alpha beta TCR specific for a particular antigen plus class I MHC protein, we were able to express the hybrid molecule in developing thymocytes expressing the class I MHC-restricted TCR. Our results show that the signal transduced by the hybrid molecule results in the differentiation of immature thymocytes expressing a class I-restricted TCR into mature T cells expressing CD4.  相似文献   

5.
B Scott  H Blüthmann  H S Teh  H von Boehmer 《Nature》1989,338(6216):591-593
THE T-cell repertoire within an individual is biased to recognize antigen in the context of self major histocompatibility complex (MHC) antigens. This is thought to depend on a process of positive selection during development. Support for this notion has recently been obtained in experiments using transgenic mice bearing genes for T-cell receptors (TCR) of defined specificity: T cells expressing the introduced genes form the main part of the mature T-cell population only in mice that express the appropriate MHC product. We have now extended these observations using TCR transgenic mice homozygous for the severe combined immunodeficiency (SCID) mutation which are defective in the rearrangement of both TCR and immunoglobulin genes. In this case mature thymocytes develop only in transgenic mice that express the MHC product which restricts the specificity of the transgenic TCR. This shows that the interaction of the alpha beta TCR with thymic MHC antigen is essential for the development of mature T cells. Furthermore, the peripheral lymph nodes of such mice are underdeveloped, suggesting that the peripheral expansion of mature T cells may require interactions with other lymphocytes expressing a range of receptors.  相似文献   

6.
L C Burkly  D Lo  O Kanagawa  R L Brinster  R A Flavell 《Nature》1989,342(6249):564-566
T-cell reactivity to the class II major histocompatibility complex I-E antigen is associated with T-cell antigen receptors containing the V beta gene segments V beta 17a and V beta 5. Mice expressing I-E with the normal tissue distribution (on B cells, macrophages, dendritic cells and thymic epithelium) induce tolerance to self I-E by clonal deletion in the thymus. By contrast, we find that transgenic INS-I-E mice that express I-E on pancreatic beta-cells, but not in the thymus or peripheral lymphoid organs, are tolerant to I-E but have not deleted V beta 5- and V beta 17a-bearing T cells. Moreover, whereas T-cell populations from nontransgenic mice proliferate in response to receptor crosslinking with V beta 5- and V beta 17a-specific antibodies, T cells from INS-I-E mice do not. Thus, our experiments provide direct evidence that T-cell tolerance by clonal paralysis does occur during normal T-cell development in vivo.  相似文献   

7.
T-cell differentiation in the thymus is thought to involve a progression from the CD4-CD8- phenotype through CD4+CD8+ intermediates to mature CD4+ or CD8+ cells. There is evidence that during this process T cells bearing receptors potentially reactive to 'self' are deleted by a process termed 'negative selection' One example of this process occurs in mice carrying polymorphic Mls antigens, against which a detectable proportion of T cells are autoreactive. These mice show clonal deletion of thymic and peripheral T-cell subsets that express the autoreactive V beta 3 segment of the T-cell antigen receptor, but at most a two-fold depletion of thymic cells at the CD4+CD8+ stage. By contrast, transgenic mice bearing both alpha and beta chain genes encoding autoreactive receptors recognizing other ligands, show severe depletion of CD4+CD8+ thymocytes as well, suggesting that negative selection occurs much earlier. We report here the Mls 2a/3a mediated elimination of T cells expressing a transgene encoded V beta 3-segment, in T-cell receptor alpha/beta and beta-transgenic mice. Severe depletion of CD4+CD8+ thymocytes is seen only in the alpha/beta chain transgenic mice, whereas both strains delete mature V beta 3 bearing CD4+ and CD8+ T cells efficiently. We conclude that severe CD4+CD8+ thymocyte deletion in alpha/beta transgenic mice results from the premature expression of both receptor chains, and does not reflect a difference in the timing or mechanism of negative selection for Mls antigens as against the allo- and MHC class 1-restricted antigens used in the other studies.  相似文献   

8.
T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.  相似文献   

9.
Programmed death of autoreactive thymocytes   总被引:19,自引:0,他引:19  
H R MacDonald  R K Lees 《Nature》1990,343(6259):642-644
T lymphocytes bearing high-affinity T-cell receptors (TCR) for self-antigens are clonally deleted during thymus development. Several recent studies have identified variable domains of the beta-chain of the TCR that are specifically deleted in vivo in mouse strains that express major histocompatibility complex class II molecules in addition to poorly defined self-antigens, including those encoded by the Mls-1a and Mls-2a loci. Deletion of autoreactive cells in these systems occurs in the thymus, and antibody blocking experiments in vivo have implicated the phenotypically immature CD4+CD8+ 'cortical' subset as the target population for clonal deletion. Similarly, studies with transgenic mice bearing autoreactive TCR have provided independent evidence that clonal deletion occurs at the CD4+CD8+ stage of development. But none of these studies directly identified dying autoreactive cells, and the circumstances leading to deletion remain unclear. Here we report that neonatal thymus contains a significant population of phenotypically mature CD4+CD8- cells bearing autoreactive TCR. When placed in short-term culture, a large proportion (60%) of these autoreactive cells die selectively. Furthermore, their death can be prevented by inhibitors of macromolecule (RNA and protein) synthesis, as is the case for glucocorticoid-induced death of thymocytes. These data indicate that physiological clonal deletion of autoreactive cells involves 'programmed' cell death, and that it can occur in cells with a mature (CD4+CD8-) surface phenotype.  相似文献   

10.
Autoimmune diabetes as a consequence of locally produced interleukin-2.   总被引:9,自引:0,他引:9  
During cell differentiation in the thymus, self-reactive T cells can be generated. The majority of these seem to be deleted after intrathymic encounter with the relevant autoantigen. As all self antigens are unlikely to be present in the thymus, some autoreactive T cells may escape censorship. Here we study the fate of these cells using transgenic mice expressing the class I molecule H-2Kb (Kb) in the insulin-producing beta-cells of the pancreas. These mice were crossed with mice transgenic for genes encoding a Kb-specific T-cell antigen receptor (TCR) which could be detected using a clonotype-specific monoclonal antibody. Although T cells expressing the highest level of transgenic TCR were deleted intrathymically in double-transgenic mice, Kb-specific T cells were detected in the periphery. These cells caused the rejection of Kb-expressing skin grafts, but ignored islet Kb antigens even after priming. But when double-transgenic mice were crossed with transgenic mice expressing the lymphokine interleukin-2 in the pancreatic beta-cells, there was a rapid onset of diabetes. These results indicate that autoreactive T cells that ignore self antigens may cause autoimmune diabetes when provided with exogenous 'help' in the form of interleukin-2.  相似文献   

11.
During their intrathymic differentiation, T lymphocytes expressing alpha beta T-cell receptors (TCR) are negatively and positively selected. This selection contributes to the establishment of self-tolerance and ensures that mature CD4+ and CD8+ cell populations are restricted by the self major histocompatibility complex. Little is known, however, about gamma delta T-cell development. To investigate whether selection operates in the establishment of the gamma delta T-cell class, we have generated transgenic mice using gamma- and delta-transgenes encoding a TCR that is specific for a product of a gene in the TL-region of the TLb haplotype. Similar numbers of thymocytes expressing the transgenic TCR were generated in mice of TLb and TLd haplotypes. But gamma delta thymocytes from TLb and TLd transgenic mice differed in cell size, TCR density and in their capacity to respond to TLb stimulator cells or interleukin-2 (IL-2). In contrast to gamma delta T cells from TLd transgenic mice, gamma delta T cells from TLb transgenic mice did not produce IL-2 and did not proliferate in response to TLb stimulator cells, but they did proliferate in the presence of exogenous IL-2. These results indicate that functional inactivation of self-antigen-specific T cells could contribute to the establishment of self-tolerance to thymic determinants.  相似文献   

12.
H R MacDonald  H Hengartner  T Pedrazzini 《Nature》1988,335(6186):174-176
T-cell differentiation in the thymus involves the coordinate expression of genes encoding the alpha and beta chains of the major histocompatibility complex-restricted heterodimeric antigen receptor (TCR) complex, as well as other functionally important molecules such as CD4 and CD8. The repertoire of TCR expressed by T cells is generally thought to be influenced by positive and/or negative selection events occurring when TCRs on developing T cells interact with self-antigens and major histocompatibility complex components. Using a model system in which specific antigen-reactive cells can be monitored by virtue of their preferential expression of certain TCR beta-chain variable (V beta) domains, it has been shown that self-reactive T cells are clonally deleted during development. We report here that clonal deletion of V+ beta 6 cells in Mlsa mice can be prevented by in vivo neonatal administration of monoclonal antibodies directed against CD4. Furthermore, as anti-CD4 monoclonal antibody treatment resulted in the reappearance of V+ beta 6 cells in the mature CD8+ T-cell subset, it is likely that clonal deletion acts on the CD4+CD8+ thymocyte subset and that this subset is an intermediate stage in the differentiation pathway of both CD4+ and CD8+ T-cell lineages.  相似文献   

13.
P J Dyson  A M Knight  S Fairchild  E Simpson  K Tomonari 《Nature》1991,349(6309):531-532
The T-cell receptor (TCR) repertoire is selected in the thymus after rearrangement of genes encoding TCR alpha and beta chains. Selection is based on the recognition by newly emergent T cells of self-ligands associated with molecules of the major histocompatibility complex: some combinations result in positive selection, others in negative selection. Negative selection, or clonal deletion, is an important mechanism for eliminating autoreactive T cells. A group of self-ligands involved in clonal deletion was identified because they, like exogenous superantigens, were recognized by almost all T cells expressing particular TCR V beta genes. V beta 17a T cells are deleted by a tissue-specific ligand; V beta 6, V beta 7, V beta 8.1 and V beta 9 T cells are deleted by the minor lymphocyte-stimulating (Mls) determinant Mls-1a; V beta 3 T cells by Mls-2a and Mls-3a; V beta 11 T cells by ligands encoded by independently segregating genes; and V beta 5 T cells by ligands encoded by two genes. Chromosome mapping using recombinant inbred strains of mice and classic backcrosses show that Mls-1a in DBA/2 mice is encoded on chromosome 1, that one of the two ligand genes for deletion of V beta 5 T cells maps to chromosome 12 and that a ligand gene for V beta 11 deletion is linked to the CD8 locus on chromosome 6. Here we present evidence from three sets of backcross mice for concordance between V beta 11 deletion ligand genes on chromosomes 6, 12 and 14 and endogenous mouse mammary tumour virus integrant (Mtv) genomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

15.
The major problem in the study of T-cell development is that of tracking thymocytes of a given specificity. Recent studies have exploited natural correlations between the expression of a particular V beta gene segment and T-cell receptor (TCR) specificity. We and others (refs 5, 6 and M. Davis, personal communication) have taken an alternative approach. We have generated transgenic mice expressing the alpha beta antigen receptor from the cytotoxic T-lymphocyte clone 2C (ref. 7). In transgenic mice of the same haplotype as the 2C clone, the 2C TCR was expressed on 20-95% of peripheral T cells. Very few of these T cells carried the CD4 antigen; the vast majority were CD4-CD8+ and were able to lyse targets with the same specificity as the original 2C clone. These results indicate that the alpha beta heterodimer transfers specificity to recipient cells as expected from earlier studies, and that receptor specificity in T-cell repertoire selection is determined by both alpha beta heterodimer and CD4 or CD8 accessory molecules.  相似文献   

16.
A role for clonal inactivation in T cell tolerance to Mls-1a   总被引:25,自引:0,他引:25  
Clonal deletion plays a major part in the maintenance of natural self-tolerance in both normal and transgenic mice. Self antigens that are expressed in the thymus result in the physical elimination of autoreactive thymocytes at a particular stage in their development. For example, the majority V beta 6- and V beta 8.1-bearing T cells that recognize the minor lymphocyte-stimulating antigen, Mls-1a (ref. 10) , are clonally deleted in the thymuses of normal mice and transgenic mice expressing Mls-1a (refs 2, 3, 9). In contrast, a very different mechanism of tolerance involving the functional inactivation, but not elimination, of autoreactive cells, termed clonal inactivation or clonal anergy, has been implicated in some experimentally manipulated systems of tolerance. To test further the mechanisms involved in self-tolerance, we have generated transgenic mice expressing a V beta 8.1 beta chain on greater than 95% of peripheral T cells and have tested tolerance to Mls-1a in these mice. Surprisingly, a significant fraction of the CD4+ peripheral cells that survived deletion were non-responsive in vitro to any stimulus tested. Naturally occurring tolerance to a self antigen expressed in the thymus can thus be mediated by clonal anergy, as well as by clonal deletion.  相似文献   

17.
J E Sims  A Tunnacliffe  W J Smith  T H Rabbitts 《Nature》1984,312(5994):541-545
Immune systems of vertebrates function via two types of effector cells, B and T cells, which are capable of antigen-specific recognition. The immunoglobulins, which serve as antigen receptors on B cells, have been well characterized with respect to gene structure, unlike the T-cell receptors. Recently, cDNA clones thought to correspond to the beta-chain locus of the human and mouse T-cell receptor have been described. The presumptive beta-chain clones detect gene rearrangement specifically in T-cell DNA and show homology with immunoglobulin light chains. The similarity of the T-cell beta-chain gene system to the immunoglobulin genes has been further demonstrated by the recent observation of variable- and constant-region gene segments as well as joining segments and putative diversity segments. We report here the characterization of cDNA and genomic clones encoding human T-cell receptor beta-chain genes. There are two constant-region genes (C beta 1 and C beta 2), each capable of rearrangement and expression as RNA. The gene arrangement, analogous to that of mouse beta-chain genes, shows strong evolutionary conservation of the dual C beta gene system in these two species.  相似文献   

18.
Thymic selection process induced by hybrid antibodies   总被引:2,自引:0,他引:2  
F Zepp  U D Staerz 《Nature》1988,336(6198):473-475
Thymus-derived (T) lymphocytes using the alpha beta T-cell antigen receptor (TCR) recognize fragmented antigen in conjunction with surface molecules encoded by genes of the major histocompatibility complex (MHC). Peripheral T lymphocytes preferentially see antigen presented by self rather than by foreign MHC molecules, and autoreactive T lymphocytes are deleted. Thus, the peripheral T-lymphocyte repertoire is skewed towards recognition of antigen in the context of self-MHC and towards tolerance to self-antigens. During T-lymphocyte development in the thymus, this repertoire is formed by the interaction of TCR with MHC molecules resulting in positive and negative selection phenomena. Hybrid antibodies (HAbs) that carry binding sites to the TCR and to a surface marker on another cell can engage all T lymphocytes regardless of their specificity. It should be possible to mimic selection processes in normal animals with HAb that specifically link members of a TCR family to MHC molecules on the thymic stroma. We have probed T-lymphocyte development with HAbs linking V beta 8-positive TCR to either class I or class II MHC products in thymic organ culture. Thymocytes exposed to either HAb in an early stage of maturation respond with a significant increase in the frequency of V beta 8-carrying cells. At a later stage of development V beta 8-positive thymocytes are depleted. These results illustrate the succession of positive and negative selection in the developing thymus of normal mice.  相似文献   

19.
The newly described T-cell receptor (TCR) delta locus is located inside the TCR alpha locus, between variable region (V)alpha and joining region (J)alpha. Although the delta and alpha TCR genes are physically linked on the same chromosome, they are sequentially expressed during T-cell development. This implies the existence of a highly efficient regulatory mechanism by which these two genes are independently rearranged. We have recently described a genetic element 'T early alpha' (TEA) in humans transcribed in foetal thymocytes, spliced alternatively to constant region (C)alpha, and located between the TCR-delta locus (5') and the group of J alpha segments (3'). Importantly, TEA flanks a common site of rearrangement in the thymus, and distinguishes cells using TCR-gamma/delta (TEA in germline configuration) from cells using TCR-alpha/beta (TEA deleted on both chromosomes). In order to understand this TEA-associated recombination we analysed genomic clones representing these thymic rearrangements. We show that the TEA-associated recombination deletes the delta locus before productive (V delta D delta J delta) rearrangement. The diversity (D)delta and J delta regions, which provide the major source of delta gene diversity, are eliminated as a consequence of delta gene deletion and cannot then be used in conjunction with an alpha-TCR. We propose that the TEA-associated deletion of TCR-delta precedes the formation of an alpha-TCR and could down-regulate TCR-delta formation in maturing thymus.  相似文献   

20.
The antigen receptor on T lymphocytes has recently been characterized as a heterodimeric, transmembrane glycoprotein consisting of disulphide-linked alpha (acidic) and beta (basic) subunits of relative molecular mass (Mr) 40,000-45,000 each. The genes encoding these proteins have been cloned and shown to resemble immunoglobulin genes in both overall structure and the requirement for DNA rearrangement before expression. In humans, three additional proteins, termed the T3 complex, are found associated with the clonotypic receptor, and a role for T3 in receptor expression has been proposed. Despite these recent advances in characterizing the antigen receptor complex, there is as yet little understanding of T-cell maturation, particularly the stage of T-cell ontogeny at which the genes encoding the antigen receptor and its associated structures are expressed and assembled. In the adult, stem cells destined to differentiate into T cells arise in the bone marrow and migrate to the thymus, where T-cell precursors proliferate, develop a preference for recognizing antigens in the context of self MHC molecules and are released to the periphery. Recently, cells that have the properties of immature murine thymocytes have been isolated and described. We have now analysed these cells with a series of molecular probes and we describe three distinct patterns of T-cell antigen receptor gene rearrangements in developing thymocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号