首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
采用Gleeble-3500热模拟机进行圆柱体压缩试验,研究了新型铝青铜合金在变形温度为650~950℃、应变速率为0.01~5s-1、真应变为0~0.8条件下的流变应力特征。结果表明:应变速率为0.01和5s-1时,铝青铜合金首先出现加工硬化,流变应力达到峰值后趋于平稳,表现出动态回复的特征;应变速率为0.1和1s-1时,合金发生了局部动态再结晶;可用Zener-Hollomon参数的双曲正弦形式来描述新型铝青铜合金热压缩变形时的流变应力行为。  相似文献   

2.
在热模拟试验机上对铸态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围为900~1200 ℃,应变速率范围为10-3~1 s-1,测试了其真应力-真应变曲线并对曲线上的应力σ突降进行了解释。基于动态材料模型建立了合金的热加工图,结合微观组织观察,确定了3个不同区域的高温变形机制:温度900~1030 ℃、应变速率小于0.1 s-1时,变形机制为动态回复和连续动态再结晶;温度大于1030 ℃、应变速率小于0.1 s-1时,功率耗散效率η出现峰值,除了动态回复和连续动态再结晶,还出现碳化物溶解现象;高应变速率(大致在0.01~1 s-1之间)区,是合金的变形失稳区域,较低温度时失稳机制为局部流动,高温失稳与碳化物溶解有关,=1 s-1时组织演变特征是项链状动态再结晶  相似文献   

3.
采用Gleeble-1500D热力模拟试验机进行新型Al-Zn-Mg-Cu高强铝合金的热压缩实验,变形程度为10%~80%,变形温度为300℃~450℃,应变速率为0.001s-1~10s-1。利用光学显微镜(OM)和透射显微镜(TEM)观察合金在不同压缩条件下的组织形貌特征,分析了热变形参数对微观组织的影响。研究结果表明,试验温度范围内,变形程度达到50%以上时,试样呈锻态变形组织,且变形程度的增大,有利于动态再结晶的进行;随着变形温度的升高和应变速率的减小,位错密度减小,亚晶粒尺寸增大。新型Al-Zn-Mg-Cu合金热压缩变形过程中主要的软化机制为动态回复和动态再结晶,当应变速率为0.01s-1、变形温度为300℃~400℃时,主要发生动态回复;当变形温度为450℃、应变速率在0.001s-1~10s-1范围内时,其变形以动态再结晶为主。  相似文献   

4.
通过高温拉伸试验,研究了AZ31B镁合金板材在250~450℃以及应变速率0.001 s-1、0.01 s-1条件下的高温变形行为,获得了材料的厚向异性系数、伸长率等成形性能参数及有关组织特征.结果表明,不同变形条件下AZ31B合金的真应力-真应变曲线均出现峰值,峰值应力随变形温度的升高和应变速率的降低而减小;硬化速率随变形温度的升高而降低,在温度高于250℃时变化不大.当变形温度为250 ℃,应变速率为0.001 s-1时,合金的厚向异性系数达到最大.随变形温度的升高,AZ31B镁合金的塑性显著提高.合金的动态再结晶温度为250℃,随着应变速率增大,合金发生动态再结晶的速度加快.  相似文献   

5.
采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为400℃,应变速率为0.01~10.0 s-1的等温压缩实验,获得热变形过程中的真应力-真应变曲线。结果表明:应变速率ε≥1.0 s-1时,实际变形温度高于预设温度,产生变形热效应。合金发生动态再结晶的临界应变随着应变速率的升高而增加,在较高应变速率条件下(ε≥1.0 s-1),流变应力曲线出现锯齿形波动,合金发生了不连续动态再结晶。利用光学显微镜和透射电镜分析了应变速率对3003铝合金热变形组织演变的影响。结果表明:应变速率越小,合金越容易发生动态再结晶,当应变速率为10.0 s-1时,由于变形热效应的作用,合金也发生了动态再结晶。低应变速率(ε≤0.1 s-1)条件下,提高应变速率可以明显细化晶粒,并且在相同应变下,动态再结晶体积分数随应变速率的增大而减小,综合考虑动态再结晶晶粒的大小和组织均匀性,较佳的应变速率为0.1 s-1。  相似文献   

6.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

7.
在Gleeble-1500热/力机上进行了变形条件对2124铝合金超厚板流变行为与显微组织的影响规律的系列实验研究,得到了不同变形条件下2124铝合金超厚板高温压缩成形过程中的流变曲线。实验结果表明,2124铝合金在0.01s-1~1s-1范围内,高温压缩变形过程存在近稳态流变特征,近稳态流变应力随着应变速率的降低和变形温度的升高而降低。当应变速率为10s-1时,真应力-真应变曲线出现锯齿状,说明合金发生动态再结晶现象。利用OM和TEM分别研究了变形温度、应变速率、应变量对2124铝合金高温压缩变形显微组织的影响,在此基础上,分析并建立了2124铝合金热压缩变形发生动态再结晶的临界条件。  相似文献   

8.
氮强化高锰奥氏体钢热变形行为研究   总被引:1,自引:0,他引:1  
利用Gleeble-3500热力模拟试验机在温度为1253~1423K,应变速率为0.1~10s-1的条件下对32Mn-7Cr-1Mo-0.3N奥氏体钢进行了热压缩变形试验,测定了其真应力-应变曲线,观察了变形后的组织.试验结果表明,流变应力和峰值应变随变形温度的降低和应变速率的提高而增大.真应变为0.6时,在1423K、应变速率在0.1~10s-1之间的试样均已发生完全动态再结晶;在1373K以下变形时,应变速率在0.1~10s-1之间,试样发生部分动态再结晶.动态再结晶晶粒尺寸随着变形温度的升高而增大,随着应变速率的升高而减小.32Mn-7Cr-1Mo-0.3N奥氏体钢的热变形激活能Q值为469.03kJ/mol,并获得热变形方程.  相似文献   

9.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

10.
在热模拟试验机上对Ti43Al5Nb0.03Y合金进行压缩变形实验,温度范围为1050~1200 ℃,应变速率范围为10-3~10-1 s-1,获得了其真应力-真应变曲线,并对热变形组织进行显微分析.结果表明:在低于1200 ℃的条件下,材料的锻后组织为残余层片和再结晶晶粒的混合组织,而温度达到1200 ℃时,材料锻后得到完全再结晶组织;在实验所涉及的温度及应变速率范围内,Ti43Al5Nb0.03Y合金的塑性变形机制主要为γ相中的滑移和孪生,其流变软化机制主要为γ相动态再结晶以及少量的γ相中的回复;该合金锻造温度不宜低于1200 ℃,在锻造工艺参数为1200 ℃, 10-3s-1条件下可以得到表面无裂纹,变形组织为细小等轴晶组织的锻件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号