首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石膏品种对低热硅酸盐水泥性能的影响及机理研究   总被引:2,自引:0,他引:2  
检测了掺入不同石膏的低热硅酸盐水泥的物理性能及水化率,并采用XRD、离子色谱法分析了不同石膏品种对低热水泥性能的影响机理。结果表明:硬石膏作缓凝剂时,低热水泥的强度随着石膏掺量的增加而逐步提高,掺量越大,对水泥的增强作用越明显。二水石膏对低热水泥强度的影响曲线呈波浪形。掺入硬石膏可提高水泥石液相中SO42-离子浓度,从而加快水泥中硅酸盐矿物的水化速度,显著提高低热水泥的强度。  相似文献   

2.
0 前言 低热硅酸盐水泥,亦称高贝利特水泥,是一种C_2S矿物含量高达50%左右,28天强度必须达到55MPa以上,而且后期强度还有强劲增长的一种新品种水泥。该品种水泥以其低水化热、高后期强度、高工作性能和低资源消耗等特点,越来越引起人们重视。  相似文献   

3.
低热硅酸盐水泥因水化热低而被大量应用于高等级大体积混凝土工程以降低温度应力给结构带来的开裂风险。此外,高温下强度增长稳定的特点决定其能在高热施工环境发挥作用,优良的体积稳定性有利于解决混凝土结构开裂问题,较高的后期强度和优良的抗侵蚀性能适合用于高性能混凝土的制备。本文从水化、性能等角度出发,分析了低热硅酸盐水泥在水化调控、水化产物及微观结构、性能优化等方面存在的部分问题,总结了低热硅酸盐水泥高温耐受、抗侵蚀、体积稳定等性能特点,提出了低热硅酸盐水泥在严酷环境、高热环境中的应用展望。  相似文献   

4.
5.
<正>1简介低热硅酸盐水泥(以下简称低热水泥)是我院从水泥工业的节能降耗以及提高混凝土的安全性与耐久性出发,研制成功的具有工作性能优良、水化热低、后期强度高及耐久性好的新型胶凝材料,可应用于各类工程,尤其适用于大体积混凝土工程(如水工大坝)建设。低热水泥突破了传统硅酸盐水泥熟料以C3S为主导矿物的组成设计,在制备技术上解决了C2S矿物活化和高活性晶型的常温稳定两大国际难题,在国内  相似文献   

6.
王善拔 《水泥》2007,(12):35-35
土耳其Marmaray-Istanbul铁路工程需要一种低水化热水泥,还要求它抗海水硫酸盐腐蚀、抗碱-集料反应且早期后期强度都高。为此,土耳其OYAK BOLU水泥厂调整了水泥熟料组成,大幅度降低C3A、增加C2S含量,在6个月内生产出3种低热水泥熟料,其中水化热最低的组成见表1。  相似文献   

7.
通过对比试验,证明低热硅酸盐水泥(HBC)的工作性、力学性能和耐久性等均优于纯硅酸盐水泥(PC),完全能够满足高性能砼的三大技术要求,是制备高性能砼、大体积砼、蒸养砼制品、高温施工砼及有特殊抗化学侵蚀要求砼的理想胶凝材料。  相似文献   

8.
硅酸盐水泥水化机理研究方法   总被引:3,自引:0,他引:3  
武华荟  刘宝举 《粉煤灰》2009,21(1):33-36
介绍了硅酸盐水泥的水化机理及其几个研究水泥水化机理的方法,并指出其中一些方法优缺点及未来研究方向。  相似文献   

9.
在保持优异耐久性前提下提高中、低热硅酸盐水泥早期力学性能,对于其在建筑工程中的更广泛应用意义重大.本文以高活性偏高岭土(MK)为辅助性胶凝材料,研究了其替代性掺入对中、低热硅酸盐水泥水化、力学性能和干燥收缩的影响.研究结果表明:MK在水泥水化早期即可发生火山灰反应,从而促进水泥熟料矿物早期水化,缩短中、低热硅酸盐水泥水...  相似文献   

10.
李华  吴笑梅  樊粤明 《水泥》2007,(7):22-25
检测了不同烧成温度制成的低热水泥的物理性能及水化速率,并采用岩相分析、XRD、EDS﹑化学分析方法研究了不同烧成温度对低热水泥熟料岩相结构﹑矿物组成、矿物晶型及矿物固溶组分的影响。结果表明,低温烧制的熟料中C4A3S的生成及C3A、C4AF含量相对较多是低温烧制的低热水泥早期强度较高的主要原因;而高温烧成的熟料中高温晶型C2S含量高,B矿中固溶SO3、Al2O3、Fe2O3多,B矿的Ca/Si增高,水化活性增大,这是高温烧成的低热水泥后期强度较高的主要原因。  相似文献   

11.
史才军  刘慧  李平亮  何富强 《硅酸盐学报》2011,39(10):1673-1681
通过水泥净浆和砂浆强度试验、测量水化热、硬化水泥浆体的热分析、微观结构的扫描电镜观察和孔结构的测量,研究了三异丙醇胺(triisopropanolamine,TIPA)对石灰石硅酸盐水泥强度、水化过程和硬化水泥浆体的微观结构的影响。结果表明:掺加TIPA能够显著提高石灰石硅酸盐水泥净浆和砂浆的后期强度;TIPA对C4A...  相似文献   

12.
立筒预热器窑生产低热矿渣硅酸盐水泥的研究   总被引:1,自引:0,他引:1  
低热矿渣硅酸盐水泥主要用于大坝或大体积建筑物及水利工程。我省现有水利工程所使用的均为普通水泥,由于普通水泥的水化热大,混凝土导热率低,水泥水化时放出的热量不易散发,可使内部温度升高,最高可达60℃以上,混凝土因温差产生拉应力,使混凝土内部出现微裂纹,致使混凝土的耐久性能下降,从而对大坝造成危害。低热矿渣硅酸盐水泥在性能上克服了普通水泥水化热高和放热速率大的缺点。我们与庆安冶金水泥厂合作,在该厂Φ25m×45m捷克型第三代立筒预热器回转窑上试制低热矿渣硅酸盐水泥。1原燃材料的选择选用的原燃材料分析结果见表1…  相似文献   

13.
新型磷渣硅酸盐水泥的水化特性   总被引:20,自引:2,他引:20  
新型磷渣硅酸盐水泥作为一种新型结构材料,巳投入批量生产和应用。考虑到达种水泥系采用含有Na_2SO_4的矿物CNS代替石膏作水泥调凝剂,并且磷渣带入的少量P_2O_5将对水泥的水化过程产生一定影响,作者采用XRD,SEM及反应过程分析等手段对新型磷渣水泥的水化恃性进行了研究,发现其水化过程与普通矿渣水泥有些不同,主要表现在:(1)CNS加速了AFt的形成及水泥矿物的水化;(2)CNS促进了AFt的分散及磷渣的溶解反应;(3)磷渣玻璃体的结构特征决定了新型磷渣水泥中的AFt能够长期稳定存在。因此使其具有正常的初凝时间和较高的早期强度。  相似文献   

14.
为了改善高寒地区混凝土坝体内部因水化热引起的坝体开裂问题,以低热水泥为研究对象,对几种不同水泥的水化放热、绝热温升、胶砂力学性能、混凝土抗裂性能等进行了对比研究.结果表明:低热水泥可有效降低混凝土的水化放热,减小绝热温升,控制早期温度裂缝;C2 S反应较慢,使得低热水泥的早期力学强度远低于中热水泥,但C2 S较C3 S...  相似文献   

15.
钢渣对硅酸盐水泥水化硬化的影响研究   总被引:2,自引:0,他引:2  
研究了钢渣的掺量对硅酸盐水泥强度的影响,采用SEM和EDXA分析了水泥水化产物的形貌和微区化学成分,并用XRD对水泥水化产物的矿物组成进行了分析。结果表明,钢渣经细磨后活性有很大提高,当钢渣试样的比表面积为444.5m~2/kg时,其28d强度活性指标可达82.4%;钢渣的掺入会降低水泥的抗压强度,但随钢渣-硅酸盐水泥混合体系水化的全面进行,7d以后龄期的强度增长较快,至120d时混合水泥的净浆抗压强度已与纯硅酸盐水泥相差甚小;掺入钢渣后混合水泥水化产物的形貌与纯硅酸盐水泥的水化产物无明显差别,都有六方片状的Ca(OH)_2,CSH凝胶的形貌也与纯硅酸盐水泥的水化产物类似,所不同的是此种凝胶合有较多的含铁相;掺钢渣的混合水泥的水化产物主要有C_2SH(C)、AFt和Ca(OH)_2,但C_2SH(C)性质的确定还需要继续深入研究。  相似文献   

16.
双膨胀中热硅酸盐水泥及其水化机理的研究   总被引:2,自引:1,他引:1  
叶青  陈胡星  楼宗汉 《硅酸盐学报》2000,28(4):335-339,347
用XRD,SEM/EDAX和水泥净浆膨胀测定等方法对高镁中热水泥熟料-石膏系统的双膨胀中热水泥进行了研究,得到(1)在熟料中明显地存在着相到分散的颗粒尺寸约为5~7.5μm的方镁石颗粒;(2)双膨用或热水泥强度和膨胀随SO3含量的变化规律。(3)该水泥充分利用了钙矾石膨胀和水镁石膨胀,在28d龄期前主要仿造钙矾石膨胀,在28d龄期后主要依靠水镁石膨胀;(4)在适当的SO3含量和MgO质量分数为4%  相似文献   

17.
石灰石硅酸盐水泥性能及其水化研究   总被引:7,自引:0,他引:7  
杨建森  张祖绵 《水泥》1996,(10):10-14
研究了石灰石不同掺量尤其是在大于10%的高掺量情况下对硅酸盐水泥力学性能的影响,并试验研究了这种水泥的其他性能,探讨了其水化机理。研究表明,开发石灰石硅酸盐水泥具有一定的工业价值。  相似文献   

18.
为探明二元固废间的协同胶凝作用,本文研究了不同配合比条件下钢渣-赤泥-水泥基复合砂浆的力学性能,并采用水化热、XRD、TG-DTG、SEM等手段来表征复合砂浆的水化特征及微观形貌。研究结果表明:与纯水泥组相比,单掺30%(以下均为质量分数)钢渣会抑制浆体的水化反应,从而降低砂浆的力学性能,而在单掺30%钢渣的基础上复掺适量的赤泥可以有效降低钢渣对砂浆力学性能的负面影响。其中,当钢渣掺量为15%、赤泥掺量为15%时,复合砂浆的28 d抗折强度和28 d抗压强度均最高,分别为6.8和39.8 MPa,与单掺30%钢渣组相比,复合砂浆的28 d抗折强度和28 d抗压强度分别提高了11.5%和20.6%,这主要是因为掺入的赤泥不仅起到物理填充作用,而且为钢渣的水化反应提供了良好的碱性环境,促进钢渣参与水化反应,生成更多的钙矾石和水化硅酸钙凝胶,改善砂浆的微观结构。  相似文献   

19.
研究了硫铝酸盐激发的超硫酸盐水泥(CSA-SSC)的水化硬化机理.采用微量热仪、TGA和SEM-SE方法对CSA-SSC的水化放热过程、水化产物和微观结构进行了分析.研究表明:CSA-SSC早期的强度略低,后期CSA-SSC的强度快速增长;该材料表现出超低水化热特性;CSA-SSC水化早期产物主要是钙矾石,在水化后期,主要产物是C-S-H凝胶;CSA-SSC硬化体中的针状钙矾石相互交错形成骨架,C-S-H凝胶则填充于骨架之间,使整个水泥浆体形成致密的结构,从而CSA-SSC的强度逐渐提高.  相似文献   

20.
改性硅酸盐水泥的水化动力学研究   总被引:2,自引:0,他引:2  
将磷铝酸盐水泥熟料掺入到硅酸盐水泥中制备改性水泥,从水化动力学的角度研究其水化情况,并与硅酸盐水泥的相应行为进行了对比.首先通过测定水化放热速率、新拌水泥浆体中的Ca2+和SiO44-离子浓度、电导率及pH值研究了改性硅酸盐水泥的水化历程,并求得了水化动力学方程.其次,测定了改性硅酸盐水泥的净浆与砂浆的强度,并用XRD等分析方法初步探讨论了改性水泥的水化机理.研究发现,改性硅酸盐水泥的水化历程与硅酸盐水泥相似,也经历初始期、诱导期、加速期、减速期和稳定期,但水化放热速率明显提高;在加速期,两者的水化反应均主要由自动催化反应控制,在减速期,均主要由扩散过程控制,但反应速率常数前者明显高于后者.无论是砂浆强度,还是净浆强度,前者也均高于后者,且凝结时间相对缩短.XRD图谱显示,前者的C3S/C2S衍射峰强度的降低率高于相应龄期的硅酸盐水泥.上述结果均意味着改性硅酸盐水泥的水化速度明显高于硅酸盐水泥;水化加速的机理为磷铝酸盐熟料水化吸收了水化浆体中OH-离子,使水化体系的OH-离子浓度减少,从而加速了C3S、C2S的水化反应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号