首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
目的 研究干摩擦条件下不同AlTiN/AlCrN多层膜纳米调制结构对摩擦磨损行为的影响。方法 将处理过的合金工具钢和单晶硅片作为膜层生长的基底材料,在膜层制备之前,先对基底材料进行预处理,然后使用多靶磁控溅射纳米膜层系统沉积一系列不同调制周期和调制比的AlTiN/AlCrN纳米多层膜。通过控制涂层总厚度不变,在调制比为1︰1时,设计不同的调制周期,择优选出磨损量最小、耐磨性最好的调制周期,并以此为恒定值,进而设计不同调制比的试样。采用X射线衍射仪(XRD)、摩擦磨损试验机分析与表征纳米多层膜的微观结构和性能,研究调制周期和调制比对AlTiN/AlCrN纳米多层膜微观结构和干摩擦条件下摩擦磨损性能的影响。结果 AlTiN/AlCrN纳米多层膜主体均为面心立方结构,且在(111)、(200)和(220)晶面择优取向。调制结构对多层膜的磨损特性影响较大,当调制周期为14.4 nm时,在干摩擦条件下AlTiN/AlCrN纳米多层膜的摩擦磨损量最小;在调制周期恒定为14.4 nm情况下,当调制比为3︰1时,在干摩擦条件下AlTiN/AlCrN纳米多层膜的耐磨性能最好;AlTiN/AlCrN纳米多层膜的磨损机理主要以磨粒磨损和黏附磨损为主。结论 优化的AlTiN/AlCrN多层膜纳米调制结构技术可应用在切削刀具的表面再制造领域,从而延长刀具工作寿命,通过涂层良好的耐磨性能提升设备的加工效率。  相似文献   

2.
采用高功率脉冲磁控溅射与脉冲直流磁控溅射复合镀膜技术制备AlCrSiN/Mo自润滑涂层,通过真空退火处理改善其结构和性能。利用扫描电镜、X射线衍射仪、电子探针分析仪、纳米压痕仪、划痕测试仪及摩擦磨损试验机,系统研究真空退火温度对涂层组织结构、力学性能及耐磨性能的影响。结果表明:所有AlCrSiN/Mo涂层均是a-Si3N4非晶相包裹nc-(Al,Cr,Mo)N的纳米复合结构。经真空退火后,涂层表面颗粒尺寸明显增大,对应纳米硬度与临界载荷均出现下降,而耐磨和减摩性能得到显著改善。当退火温度为700℃时,涂层的综合性能最佳,纳米硬度为18.3GPa、摩擦因数为0.51、磨损率为3.4×10^-4μm^3·(N·μm)^-1,此时特征值H/E和H3/E*2亦最高。  相似文献   

3.
目前对CrAlN涂层的研究主要集中在组织结构、力学性能和抗高温氧化性能等方面,对涂层的切削性能研究较少.采用电弧离子镀和脉冲直流磁控溅射共沉积技术制备了一种CrAlN纳米复合涂层,采用XRD、扫描电镜、纳米压痕仪、划痕仪等分析了涂层的组织结构和力学性能.结果 表明:CrAlN纳米复合涂层以fcc-(Cr,Al)N相为主,同时含有少量的hcp-AlN相,涂层具有明显的(111)择优取向.由于Al元素的固溶强化效应,CrAlN涂层的硬度高达31.9 GPa.涂层与基体之间结合良好,结合力高达85.6 N.针对45钢切削,测试了CrAlN纳米复合涂层刀具的切削性能,并利用热成像仪测试了切削区温度.测试结果表明:以后刀面磨痕宽度0.3 mm为磨钝标准,CrAlN纳米复合涂层刀具的切削时间明显比无涂层刀具切削时间要长,约为无涂层刀具切削时间的3倍.在切削过程中,涂层刀具的切削温度也更低些.这是因为CrAlN纳米复合涂层中Al固溶于CrN晶格中,通过固溶强化作用提高了涂层硬度,使CrAlN纳米复合涂层具有更高的耐磨性,同时降低了刀具表面的摩擦系数,延长了刀具的使用寿命.  相似文献   

4.
采用电弧离子镀技术在硬质合金基体和立式面铣刀上分别沉积了AlTiN、AlTiCrN/AlTiN、AlTiSiN/AlTiN纳米多层涂层,采用扫描电子显微镜、X射线粉末衍射仪、能谱仪、纳米划痕、纳米压痕以及摩擦实验和切削实验等对AlTiN、AlTiCrN/AlTiN、AlTiSiN/AlTiN纳米多层涂层的结构、力学性能、摩擦性能和切削性能进行分析。结果表明,上述涂层表面形貌均较平整、大颗粒数量较少,涂层截面均较为致密。AlTiN涂层的膜基结合力为47 N,AlTiCrN/AlTiN在极限载荷为49.79 N时出现大块剥落,而AlTiSiN/AlTiN涂层的膜基结合力较大,为53.76 N。AlTiN、AlTiCrN/AlTiN、AlTiSiN/AlTiN涂层的硬度分别为24.9±3.42,26.24±2.36,32.74±4.21 GPa。在600℃高温摩擦磨损测试过程中,AlTiN涂层其磨损机制主要表现为磨粒磨损和氧化磨损,而AlTiCrN/AlTiN及AlTiSiN/AlTiN涂层磨损机制主要为粘着磨损和氧化磨损。涂层刀具铣削加工钛合金(Ti6Al4V)的寿命长短依次为AlTiNAlTiCrN/AlTiNAlTiSiN/AlTiN。AlTiN涂层刀具的磨损形式主要是粘着磨损氧化磨损,AlTiCrN/AlTiN涂层铣刀的磨损形式为磨粒磨损、粘着磨损及氧化磨损,AlTiSiN/AlTiN涂层的磨损形式为边界磨损、粘着磨损、氧化磨损。AlTiCrN/AlTiN、AlTiSiN/AlTiN多层涂层的硬度和膜基结合力较高且具有较低的磨损率,使得涂层在切削过程中具有更长的切削寿命。  相似文献   

5.
采用物理气相沉积(Physical vapor deposition, PVD)工艺在Al2O3/TiCN陶瓷刀具表面分别沉积了TiN和TiSiN涂层。通过扫描电子显微镜(SEM)观察涂层微观结构, 采用显微硬度计和划痕仪分别表征涂层硬度和测量涂层与基体的结合强度。通过对涂层刀具进行连续干切削灰铸铁实验, 研究TiN和TiSiN涂层对刀具磨损特征的影响并探讨其磨损机理, 同时研究了涂层对工件加工表面质量的影响。结果表明: PVD涂层可显著提高Al2O3/TiCN陶瓷的刀具硬度。TiN涂层和TiSiN涂层可分别提高刀具表面硬度25%和65%, 从而增加刀具耐磨性。两种涂层刀具在连续切削灰铸铁实验中主要的失效机理均是挤压变形下的磨粒磨损, 其中TiN涂层刀具还伴随有粘结磨损; 刀具上的PVD-TiN和TiSiN涂层可以有效保护Al2O3/TiCN陶瓷刀具基体, 防止崩刃, 进而改善工件表面加工质量。  相似文献   

6.
为提高Inconel 718合金的表面硬度和高温摩擦磨损性能,采用多弧离子镀技术在其表面制备CrAlN/CrN涂层。使用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、扫描电镜(SEM)、纳米压痕仪和划痕仪等对涂层的微观结构、力学性能进行分析表征。使用UMT摩擦磨损试验机测试涂层在室温、350℃和650℃下的摩擦性能,并对磨痕的形貌特征、元素分布和物相进行分析,分析涂层在不同温度下的摩擦磨损机制。结果表明:纳米多层CrAlN/CrN涂层微观结构致密,主要由fcc-CrN相组成,择优取向为(200)晶面;CrAlN/CrN涂层在Inconel 718合金表面具有良好的力学性能,其硬度和结合力分别为(29.3±1.2) GPa和70.4 N;涂层在室温和350℃下具有优异的耐磨性,磨损率分别低至1.5×10-6 mm3/(N·m)和1.7×10-6 mm3/(N·m),主导的磨损机制分别为磨粒磨损和疲劳磨损;650℃时涂层达到最低摩擦系数(0.33),但磨损率有所升高,主要表现为磨粒磨损。  相似文献   

7.
运用脉冲直流磁控溅射的方法在刀具硬质合金表面制备TiAlSiN复合涂层,实验测试N2流量对刀具硬质合金表面磁控溅射TiAlSiN涂层组织和摩擦性的影响。研究结果表明:TiAlSiN涂层出现TiSiN和AlN衍射峰。当N2浓度很高时,可以对晶粒生长起到阻碍作用,从而获得更加致密的组织结构。当设定较小N2流量时,涂层获得了最高硬度;当N2流量到达100 mL/min时,硬度提高到25.2 GPa,弹性模量保持稳定。随着N2流量的增加,涂层残余应力表现出增加,涂层结合力表现为先增大后减小。随着N2流量的增加,涂层摩擦系数表现出增加,磨损率表现出减小。在N2流量100 mL/min条件下,摩擦系数到达最大值0.55,磨损率到达最小值2.12。设定较低的N2流量,生成许多磨屑,形成犁沟;设定更高的N2流量,表现出更好的耐摩擦磨损性能。  相似文献   

8.
首先,以15vol%或25vol%的TiC0.5N0.5粉体为导电第二相,利用热压烧结法制备了TiC0.5N0.5/Si3N4复相陶瓷;然后,分别通过物理气相沉积(PVD)和化学气相沉积(CVD)技术在TiC0.5N0.5/Si3N4陶瓷刀具表面沉积了CrAlN和TiN/Al2O3/TiN涂层;最后,通过对TiC0.5N0.5/Si3N4刀具进行连续切削灰铸铁实验,研究了TiC0.5N0.5含量和涂层类型对刀具磨损特征的影响,并探讨了刀具的磨损机制。结果表明:TiC0.5N0.5含量的增加有利于提高TiC0.5N0.5/Si3N4复相陶瓷刀具基体的硬度和电导率,但对耐磨性和切削寿命的影响较小;采用PVD技术沉积CrAlN涂层时,随着TiC0.5N0.5含量的增加,涂层的厚度、结合强度和硬度都得到提高,涂层刀具的磨损性能显著提高,切削寿命也明显延长;而采用CVD技术沉积TiN/Al2O3/TiN涂层时,TiC0.5N0.5含量的变化对涂层的厚度、结合强度和硬度基本没有影响,TiN/Al2O3/TiN涂层刀具整体切削性能变化不大。CrAlN涂层和TiN/Al2O3/TiN涂层都可明显改善TiC0.5N0.5/Si3N4复相陶瓷刀具的耐磨性和切削寿命;相对于TiN/Al2O3/TiN涂层,CrAlN涂层具有更高的涂层硬度和粘着强度,但TiN/Al2O3/TiN涂层具有较大的涂层厚度,TiN/Al2O3/TiN涂层刀具表现出更加优异的耐磨性和切削寿命。TiC0.5N0.5/Si3N4复相陶瓷刀具的磨损机制以机械摩擦导致的磨粒磨损为主,伴随有少量的粘结磨损。  相似文献   

9.
为解决钛及其合金磨损性能较差的问题,采用高压冷喷涂技术在Ti6Al4V合金基体上沉积了2种不同成分的Ti/WC复合涂层,通过室温下的干滑动摩擦磨损试验分别测试了基体与复合涂层的摩擦性能,并采用扫描电镜及拉曼光谱对磨损表面进行了观察与表征。结果表明,与Ti6Al4V基体的磨损率(4.06×10-7 mm3/(N·m))相比,复合涂层的磨损率降低了一个数量级,表现出优异的耐磨性。此外,涂层内WC含量的增加,提高了涂层的显微硬度,涂层的耐磨性也随之提升。在磨损轨迹表面,由TiO2、WO3以及WC碎片构成的摩擦膜能够有效避免磨球与涂层表面的直接接触,从而降低磨损程度。因此,冷喷涂Ti/WC复合涂层在钛合金磨损防护方面具有一定的应用前景。  相似文献   

10.
用磁控溅射方法制备了低粘结TaO与低摩擦系数WS复合的TiAlTaN/TaO/WS复合涂层。该涂层由Ti过渡层、TiAlTaN耐磨层、TaO低粘结层和低摩擦系数WS层组成。涂层复合使表面形貌从多边形变为球形,但是不影响原涂层的相组成和柱状晶组织。复合涂层使原涂层的硬度和弹性模量降低,但是使摩擦系数从0.648降低到0.102。低摩擦系数复合涂层的润滑性能使切削钛合金的效率提高了84%,比商用涂层提高33%。  相似文献   

11.
AlCrSiN涂层因具有高硬度、优异的耐磨损性及抗高温氧化性而备受关注。为提高AlCrSiN涂层的性能,采用电弧离子镀技术制备了AlCrSiN涂层,研究了基体偏压对AlCrSiN涂层微观组织及力学性能的影响。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度计、划痕仪及球-盘式摩擦磨损试验机对AlCrSiN涂层的表面形貌、物相组成和力学性能进行表征。研究结果表明:不同基体偏压的AlCrSiN涂层具有B1-NaCl晶体结构和无柱状晶结构;适当提高基体偏压,可细化AlCrSiN涂层的晶粒,提高涂层的表面质量及致密性,从而提高涂层的性能;基体偏压为150V的涂层致密性最好,具有更高的硬度(3 430HV)、结合力(76N)及更好的耐磨损性能。  相似文献   

12.
采用真空电弧熔炼法制备直径为7 mm AlCrNiFeTi高熵合金(high-entropy alloy,HEA)作为电极,使用电火花沉积技术在304不锈钢表面成功制备了AlCrNiFeTi高熵合金涂层。通过XRD、OM、EDS、SEM、显微硬度计、摩擦磨损试验机对涂层的微观组织结构和摩擦磨损性能进行研究。结果表明,AlCrNiFeTi电极与涂层均以BCC1和BCC2简单固溶体为主,电极微观组织结构呈典型的树枝晶。涂层由沉积点堆叠铺展形成,表面均匀致密呈橘皮状、凸凹不平,为喷溅花样展开,涂层截面结构无宏观缺陷,厚度约为59.67μm。AlCrNiFeTi涂层最大显微硬度为587.3HV0.2,比基材的硬度提高了约2.45倍。随着载荷的增大,涂层的磨损机制由氧化磨损和轻微磨粒磨损转变为磨粒磨损和黏着磨损。当摩擦载荷为5 N时,磨损率为1.213×10-3 mm3/(N·m),摩擦因数仅为0.446,涂层的磨损率较基材的磨损率减小了约28.3%。  相似文献   

13.
利用反应磁控溅射N2流量灵活可调的特点,在Zr-4基底上,制备了由AlTiCrNiTa高熵合金和(AlTiCrNiTa)N高熵合金氮化物交替调制的多层结构涂层。利用场发射扫描电镜(SEM)、X射线衍射(XRD)、自动划痕法(Automatic Scratch)和纳米压痕(Nanoindentation)等表征与测试手段,对调制周期为2、4、8和20的多层涂层微观形貌、晶体结构、纳米硬度和结合力进行了分析。实验结果表明,多层涂层由非晶态的AlTiCrNiTa和FCC的(AlTiCrNiTa)N组成,涂层纳米硬度随层数增加而先降后升,调制周期为20时达到52.31 GPa。此外,所有多层涂层与基底的结合强度均大于100 N。  相似文献   

14.
涂层硬质合金刀具对奥氏体不锈钢的切削特性   总被引:1,自引:0,他引:1  
为了深入探究涂层硬质合金刀具切削奥氏体不锈钢的切削机理,试验采用确定的进给量和背吃刀量,只改变切削速度的单因素法,来研究切削速度对奥氏体不锈钢工件加工表面质量的影响以及涂层刀具的切削机理。采用JEOL JSM-6360LV扫描电子显微镜和EDS能谱仪对工件加工表面及磨损刀片进行表面微区磨损形貌的观察分析与组成成分分析,采用X射线衍射仪对工件表面物相组成进行分析,采用激光扫描显微镜LSM对工件表面三维形貌进行观察分析。研究表明,切削速度较低时,不锈钢材料因材质较软,断屑性能较差;速度较高时,切削过程中粘着现象严重,致使摩擦剪应力较大,摩擦表面发生形变,进而诱发不锈钢的马氏体相变。因此,宜选用中速V=85m/min进行切削,在此速度下,被加工件获得的表面质量较好,表面粗糙度Ra=3.679μm。刀具磨损主要发生在前刀面靠近刀尖的部位,磨损机理主要表现为粘着磨损。研究发现,涂层硬质合金刀具在体现出一定的良好切削性能的同时也不可避免地发生了磨损,所以深入研究其切削机理能够丰富涂层刀具的切削理论,为提高涂层刀具在切削难加工材料时的刀具寿命以及拓展其在实际切削加工中的应用范围提供试验依据。  相似文献   

15.
采用高功率复合脉冲磁控溅射技术(HPPMS)在316不锈钢、硬质合金基体上沉积了TiN薄膜,研究不同N2流量下TiNx膜层的沉积速率、硬度、晶体生长取向、摩擦磨损等性能,并在相同的平均靶电流下与直流磁控溅射制备的TiN薄膜对比.结果表明:HPPMS制备的膜层更加致密,在氩氮流量比为7.4∶1时膜层显微硬度达2470 HV,晶粒尺寸也明显小于直流磁控溅射制备的TiN,摩擦磨损性能也得到了改善.  相似文献   

16.
为了开发既具有较高硬度、可防止黏着磨损、又具有一定孔隙能够储存润滑油的用于气缸内壁和活塞的热喷涂层,采用等离子喷涂制备了纯Mo和Mo-28%NiCrBSi复合涂层,采用图像法定量表征了涂层的孔隙率,采用压痕法测试了涂层的硬度和断裂韧性,研究了添加NiCrBSi对等离子喷涂Mo层的组织结构、孔隙率、硬度和断裂韧性的影响,并与某进口防黏着磨损Mo涂层进行比较。结果表明:等离子喷涂Mo-28%NiCrBSi复合涂层的孔隙率比纯Mo涂层略高,硬度为(561±83)HV3 N,比纯Mo涂层提高19%,比服役过的进口纯Mo涂层高约40%;复合涂层的断裂韧性为8.9 MPa"m1/2,约为纯Mo涂层的4倍,接近Mo块材。  相似文献   

17.
涂层刀具的切削性能及其应用动态   总被引:1,自引:0,他引:1  
涂层刀具是一种先进的切削工具,由于其优良的切削性能而备受人们关注.综述了各种涂层刀具的切削性能及其在切削加工中的应用现状.涂层刀具的种类从单涂层刀具发展到多元复合涂层刀具;涂层的层数从单层发展到多层,而且各单涂层的厚度趋于纳米化.因此,纳米复合涂层刀具将是今后涂层刀具的应用热点.与未涂层刀具相比,涂层刀具可有效地延长刀具的使用寿命,使刀具获得良好的综合机械性能,从而大幅度地提高其机械加工效率.  相似文献   

18.
采用磁控溅射技术在AISI-304不锈钢上制备了TiAlSiN-Ti(Mo)N/MoS2复合涂层。采用电子显微镜(SEM)、X射线衍射仪(XRD)、显微硬度计、球盘摩擦磨损试验机、表面形貌仪等对涂层的表面形貌、显微组织、硬度和摩擦学性能进行了系统的研究。结果表明TiAlSiN-Ti(Mo)N/MoS2复合涂层的硬度为27.56 GPa,相比于TiAlSiN涂层的硬度(29.1 GPa)有所下降,但是涂层的耐磨性能得到明显提高。在室温至600℃条件下TiAlSiN-Ti(Mo)N/MoS2复合涂层的主要磨损机理为黏着磨损,200和400℃时的磨损率分别为0.0339×10^-3和0.1122×10^-3mm^3/(Nm),相较于TiAlSiN涂层分别降低了38%和57%,600℃时的磨损率接近TiAlSiN涂层。总体来说TiAlSiN-Ti(Mo)N/MoS2复合涂层的性能高于单一的TiAlSiN涂层。  相似文献   

19.
在橡胶轮磨料磨损实验机上考察了40Cr钢基体上离子氮化与离子镀TiN复合涂层在苜蓿草粉软磨料下的摩擦学特性。采用划痕法测定了涂层的结合力,利用XRD分析了涂层的相结构,应用扫描电子显微镜观察分析了涂层磨损表面形貌和磨损机理。结果表明:离子氮化与离子镀TiN复合涂层的膜基结合力和硬度均高于TiN涂层;其对于苜蓿草粉软磨料的耐磨性也高于TiN涂层和渗氮层;离子氮化过渡层能显著提高TiN涂层的膜基结合力并改善薄膜的韧性;涂层能有效限制硬质颗粒对基体的压嵌和切削。涂层在苜蓿草粉软磨料下的磨损机制既包括硬质颗粒磨料条件下的切削磨损,也包括软磨料条件下的多次塑性变形和周期疲劳磨损。涂层硬度和韧性的共增可以提高其对软磨料的耐磨性。  相似文献   

20.
采用高功率调制脉冲磁控溅射Al/(Al+Ti)原子比(x)分别为0.25、0.5和0.67的TiAlSi合金靶, 溅射功率1~4 kW, 氮气分压25%, 工作气压0.3 Pa, 在Si(100)和AISI 304奥氏体不锈钢基片上沉积了TiAlSiN纳米复合涂层。TiAlSiN涂层中氮含量保持在52.0at%~56.7at%之间, 均形成了nc-TiAlN/a-Si3N4/AlN纳米晶/非晶复合结构。随着原子比x增加, 非晶含量增加, 涂层硬度先升高而后降低。当x=0.5时, 硬度最高可达28.7 GPa。溅射功率升高可提高溅射等离子体中金属离化程度, 促进涂层调幅分解的进行, 形成了界面清晰的非晶包裹纳米晶结构, 且晶粒尺寸基本保持不变。当x=0.67时, 溅射功率由1 kW上升到4 kW时, 硬度由16.4 GPa升至21.3 GPa。不同靶材成分和溅射功率条件下沉积的TiAlSiN涂层的磨损率为(0.13~6.25)×10-5 mm3/(N·m), 具有优良的耐磨性能。当x=0.67, 溅射功率2 kW时, nc-TiAlN/a-Si3N4纳米复合涂层具有最优的耐磨性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号