首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
《Fluid Phase Equilibria》2006,242(2):147-153
Isobaric vapor–liquid equilibrium (VLE) data for ethanol–water systems containing ionic liquids (ILs) 1-methyl-3-methylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), 1-butyl-3-methylimidazolium bromide ([BMIM][Br]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) at atmospheric pressure (101.32 kPa) were measured with a circulation still. The results showed that the VLE of ethanol–water systems in the presence of different ILs was obviously different from that of the IL-free system. All ILs studied showed a salting-out effect, which gave rise to a change of the relative volatility of ethanol, and even to an elimination of the azeotropic point. It was found that the salting-out effect followed the order of [BMIM][Cl] > [BMIM][Br] > [BMIM][PF6] and [MMIM][DMP] > [EMIM][DEP], which was ascribed to the preferential solvation ability of the ions resulting from the dissociation of the IL.  相似文献   

2.
Ethanol and hexane mixtures are present in industrial processes producing oxygenated additives for unleaded gasoline. The separation of ethanol and hexane is important but challenging due to the formation of an azeotropic mixture. This research focuses on the study of phosphoric-based ionic liquids (ILs) as green solvents for the separation of ethanol from hexane in a liquid extraction process. The knowledge of the (liquid + liquid) equilibrium (LLE) of this mixture is essential for the design of the extraction separation technique. Hence, the experimental determination of the LLE data for the ternary system {ethanol + hexane + 1,3-dimethylimidazolium dimethylphosphate ([MMIM][DMP])}, {ethanol + hexane + 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP])} and {ethanol + hexane + 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP])} at T = 303.2 K and atmospheric pressure was carried out. The reliability of the experimental LLE data was confirmed by applying the Othmer–Tobias and Hand equations, and the NRTL model was used to correlate the experimental results for the studied ternary system. The solute distribution ratio and selectivity, derived from the experimental LLE data, were calculated and analyzed evaluate the capacity of the investigated ILs as solvents in liquid extraction process. This capacity was also compared with that of other ILs. The experimental results show that the studied ILs can be suitable solvents in a (liquid + liquid) extraction for the separation of azeotropic mixtures of ethanol and hexane.  相似文献   

3.
Vapour pressure data were measured for three binary systems containing water, methanol or ethanol with an ionic liquid (IL) 1-ethyl-3-ethylimidazolium diethylphosphate([EEIM][DEP]) and for three ternary systems, i.e. (water + ethanol + [EEIM][DEP]), (water  + methanol + [EEIM][DEP]), and (ethanol + methanol + [EEIM][DEP]), at varying temperature and IL-content ranging from mass fraction of 0.10 to 0.85 by a quasi-static method. The vapour pressure data of the binary systems were correlated by NRTL equation with average absolute relative deviation (ARD) within 0.0091. The binary NRTL parameters were used to predict the vapour pressure of the ternary systems (ethanol + water + [EEIM][DEP]), (water + methanol + [EEIM][DEP]), and (ethanol +  methanol + [EEIM][DEP]) with an overall ARD of 0.037 and the maximum deviation of −0.1295. The results indicate that ionic liquid [EEIM][DEP] can give rise to a negative deviation from the Raoult’s law for the solvents of water, methanol and ethanol, but to a varying degree leading to the variation of relative volatility of a solvent and even removal of azeotrope for (water + ethanol).  相似文献   

4.
The distillation of close boiling mixtures may be improved by adding a proper affinity solvent, and thereby creating an extractive distillation process. An example of a close boiling mixture that may be separated by extractive distillation is the mixture ethylbenzene/styrene. The ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) is a promising solvent to separate ethylbenzene and styrene by extractive distillation. In this study, (vapour + liquid) equilibrium data have been measured for the binary system (styrene + [EMIM][SCN]) over the pressure range of (3 to 20) kPa and binary and ternary (liquid + liquid) equilibrium data of the system (ethylbenzene + styrene + [EMIM][SCN]) at temperatures (313.2, 333.2 and 353.2) K. Due to the low solubility of ethylbenzene in [EMIM][SCN], it was not possible to measure accurately VLE data of the binary system (ethylbenzene + [EMIM][SCN]) and of the ternary system (ethylbenzene + styrene + [EMIM][SCN]) using the ebulliometer. Because previous work showed that the LLE selectivity is a good measure for the selectivity in VLE, we determined the selectivity with LLE. The selectivity of [EMIM][SCN] to styrene in LLE measurements ranges from 2.1 at high styrene raffinate purity to 2.6 at high ethylbenzene raffinate purity. The NRTL model can properly describe the experimental results. The rRMSD in temperature, pressure and mole fraction for the binary VLE data are respectively (0.1, 0.12 and 0.13)%. The rRMSD is only 0.7% in mole fraction for the LLE data.  相似文献   

5.
(Solid + liquid) equilibria (SLE) and (liquid + liquid) equilibria (LLE) for the binary systems: {ionic liquid (IL) N-butyl-4-methylpyridinium tosylate (p-toluenesulfonate) [BM4Py][TOS], or N-butyl-3-methylpyridinium tosylate [BM3Py][TOS], or N-hexyl-3-methylpyridinium tosylate [HM3Py][TOS], or N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide [BM4Py][NTf2], or 1,4-dimethylpyridinium tosylate [M1,4Py][TOS], or 2,4,6-collidine tosylate [M2,4,6Py][TOS], or 1-ethyl-3-methylimidazolium thiocyanate [EMIM][SCN], or 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], or 1-hexyl-3-methylimidazolium thiocyanate [HMIM][SCN], or triethylsulphonium bis(trifluoromethylsulfonyl)imide [Et3S][NTf2] + thiophene} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 390) K. In the case of systems (pyridinium IL, or sulphonium IL + thiophene) the mutual immiscibility with an upper critical solution temperature (UCST) was detected at the very narrow and low mole fraction of the IL. For the binary systems containing (imidazolium thiocyanate IL + thiophene), the mutual immiscibility with the lower critical solution temperature (LCST) was detected at the higher mole fraction range of the IL. The basic thermal properties of the pure ILs, i.e. melting and glass-transition temperatures as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). The well-known NRTL equation has been used to correlate experimental SLE/LLE data sets.  相似文献   

6.
The (liquid + liquid) equilibrium data (LLE) for the extraction of toluene from heptane with different ionic liquids (ILs) based on the alkylsulfate anion (R-SO4) was determined at T = 313.2 K and atmospheric pressure. The effect of more complex R-SO4 anions on capacity of extraction and selectivity in the liquid–liquid extraction of toluene from heptane was studied. The ternary systems were formed by {heptane + toluene + 1,3-dimethylimidazolium methylsulfate ([mmim][CH3SO4]), 1-ethyl-3-methylimidazolium hydrogensulfate ([emim][HSO4]), 1-ethyl-3-methylimidazolium methylsulfate ([emim][CH3SO4]), or 1-ethyl-3-methylimidazolium ethylsulfate ([emim][C2H5SO4])}. The degree of quality of the experimental LLE data was ascertained by applying the Othmer–Tobias correlation. The phase diagrams for the ternary systems were plotted, and the tie lines correlated with the NRTL model compare satisfactorily with the experimental data.  相似文献   

7.
In present research the binary solutions containing ionic liquid (IL), 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM] [DMP]), are considered as new working pairs for absorption heat pumps or absorption refrigerators. The IL was synthesized in the lab and mixed with water, ethanol, or methanol. Experimental (vapor + liquid) equilibrium (VLE) of these binary systems was measured at different mole fractions ranging from 0.1 to 0.5 and was correlated by the NRTL equation within the average relative deviation of 2%, which means that the (vapor + liquid) equilibrium of these binary solutions containing ionic liquid can be predicted by traditional non-electrolyte solution model. Meanwhile these binary solutions are a negative deviation from Raoult’s law. Excess enthalpy of these binary systems was measured at the temperature of T = 298.15 K and at the pressure of 1 atm. The results indicate that the mixing processes of [EMIM] [DMP] with water, ethanol, or methanol are exothermal, which is a very important characteristic for working pairs used in absorption heat pumps or in absorption refrigerators.  相似文献   

8.
This work demonstrated the possibility of hydrophobic ionic liquid tricaprylmethylammonium thiocyanate ([A336][SCN]) as a solvent in the separation by extraction of polyhydric alcohols from their mixtures with water. The knowledge of (liquid + liquid) equilibrium (LLE) of these mixtures is essential for the design of the extraction process. For this reason, the LLE data of the ternary systems {[A336][SCN] + water + glycerol, or ethylene glycol, or 1,2-propanediol, or 1,3-propanediol} were determined at T = 303.2 K and atmospheric pressure. The reliability of the tie-lines data was ascertained by applying the Othmer–Tobias equation, and the non-random two liquid (NRTL) model used to fit the experimental LLE data. The effectiveness of the extraction of polyhydric alcohols from water was evaluated using the solute distribution ratio and the selectivity. The extraction capability of [A336][SCN] was compared with that of other ILs. The results indicated that the [A336][SCN] was suitable for use as a solvent in (liquid + liquid) extraction of polyhydric alcohols from water.  相似文献   

9.
The (liquid + liquid) equilibrium (LLE) data for three ternary systems containing heptane, toluene, and a z-methyl-N-butylpyridinium tetrafluoroborate ionic liquid ([zbmpy][BF4] IL, where z = 2, 3, or 4) were determined at T = 313.2 K and atmospheric pressure. The effect of IL cation isomers on the LLE data was evaluated for the first time. The selectivity and extractive capacity from these LLE data were calculated and compared to those previously reported in the literature for the systems (heptane + toluene + [4bmpy][BF4]) and (heptane + toluene + sulfolane). The results show that the LLE data for the systems comprising the ILs with the metha- and para-substituted cations do not differ significantly from isomer to isomer. On the other hand, significant differences were observed among the systems with the ortho-substituted cation and the other two cation isomers. The degree of consistency of the experimental LLE data was ascertained by applying the Othmer–Tobias correlation. In addition, the LLE data were satisfactorily correlated by means of the thermodynamic NRTL model.  相似文献   

10.
The (liquid + liquid) equilibrium (LLE) data for two systems containing heptane, toluene, and 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide ([mpim][Tf2N]) or 1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([amim][Tf2N]) ionic liquids (ILs) were determined at T = 313.2 K and atmospheric pressure. The effect of a double bond in an alkyl side chain in the imidazolium cation was evaluated in terms of selectivity and extractive capacity. The results show a decrease of the amount of toluene and heptane dissolved in the IL with the allyl group. Thus, the distribution ratios of toluene and heptane of [mpim][Tf2N] IL are higher than those of [amim][Tf2N] IL. On the other hand, the separation factor of the [amim][Tf2N] IL increases comparing to [mpim][Tf2N] IL. The NRTL model was used to correlate satisfactorily the experimental LLE data for the two studied ternary systems.  相似文献   

11.
Excess enthalpy (HE) for the binary system of (methanol + 2,4,4-trimethyl-1-pentene) (TMP-1) is reported at T = 298.15 K and 101 kPa. (Liquid + liquid) equilibrium (LLE) for the same system is measured at atmospheric pressure (101 kPa). LLE for ternary system of (water + methanol + 2,4,4-trimethyl-1-pentene) is measured at T = (283 and 298) K.The parameters of Non-Random Two-Liquid (NRTL) model were regressed for the system of (methanol + TMP-1) using HE and LLE from this work combined with isobaric (101 kPa) and isothermal (T = 331 K) VLE data from literature. The NRTL parameters for the binary system of (water + TMP-1) were fitted to a binary LLE data set from literature. NRTL parameters for the binary system of (water + methanol) were taken from ASPEN PLUS. The LLE for the ternary system was modeled by the three binary NRTL interaction parameters systems. The binary and ternary models were compared against the measured data.  相似文献   

12.
《Fluid Phase Equilibria》2006,248(2):174-180
The liquid–liquid equilibrium (LLE) properties were measured for the ternary systems of water + methanol + dimethyl adipate, water + adipic acid monomethyl ester + dimethyl adipate and water + methanol + dimethyl glutarate at temperatures ranging from 298.15 to 318.15 K under atmospheric pressure. Each ternary system exhibited type-I LLE behavior and the region of heterogeneity was found to increase with a decrease of temperature. These new LLE data were correlated with the NRTL model and also used to examine the validity of various versions of the UNIFAC models.  相似文献   

13.
The boiling temperature at atmospheric pressure were measured for 12 binary systems within the range T = (316 to 379) K and 7 ternary systems using a dual circulation. The systems studied contained water, methanol or ethanol with the following ionic liquids (ILs): monoethanolammonium acetate ([HEMA][Ac]), diethanolammonium acetate ([HDEA][Ac]), triethanolammonium acetate ([HTEA][Ac]) and diethanolammonium chloride ([HDEA]Cl). The experimental VLE results of the IL-containing binary systems were correlated by NRTL equation, and the binary NRTL parameters were used for the prediction of VLE of ternary systems with average absolute deviation of 0.73 K in boiling temperature. The results indicate that [HDEA]Cl can be used as an efficient solvent for the extractive distillation of (ethanol + water) mixture due to its notable salting-out effect, which lower the vapour pressure of water, increase the volatility of ethanol and eliminate the azeotropic phenomenon of the (water + ethanol) mixture at definite IL concentration.  相似文献   

14.
Densities and viscosities of binary ionic liquids mixtures, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) were measured over the entire mole fraction from T = (298.15 to 343.15) K. The excess molar volumes were calculated and correlated by Redlich–Kiser polynomial expansions. The viscosities for pure ionic liquids were analyzed by means of the Vogel–Tammann–Fulcher equation and ideal mixing rules were applied for the ILs mixtures.  相似文献   

15.
Experimental densities, speeds of sound and refractive indices of the binary mixtures of ethanol with MMIM MeSO4 (1,3-dimethylimidazolium methyl sulfate), BMIM MeSO4 (1-butyl-3-methylimidazolium methyl sulfate), BMIM PF6 (1-butyl-3-methylimidazolium hexafluorophosphate), HMIM PF6 (1-hexyl-3-methylimidazolium hexafluorophosphate) and OMIM PF6 (1-methyl-3-octylimidazolium hexafluorophosphate) were determined from T = (293.15 to 303.15) K. Excess molar volumes, changes of refractive index on mixing and deviations in isentropic compressibility for the above systems were calculated. The (liquid + liquid) equilibrium (LLE) data of (IL + ethanol) were carried out experimentally and the NRTL and UNIQUAC correlative equation was applied to these mixtures.  相似文献   

16.
Oxygenates are used in gasoline to increase the octane number and reduce carbon monoxide emission. 2-methoxy-2,4,4-trimethylpentane (TOME) is a tertiary ether which can potentially be used in addition with current oxygenates. This compound can be produced by etherification of diisobutylene with methanol. During the etherification, water is formed due to the dehydration of methanol. The appearance of water can cause (liquid + liquid) phase split in the production process. In this work, several physical properties of systems containing water, methanol and TOME are studied for the first time. The liquid density of 2-methoxy-2,4,4-trimethylpentane is presented from T = (298.15 to 408.16) K. Excess enthalpies are reported for the binary system of (methanol + 2-methoxy-2,4,4-trimethylpentane) at (T = 298.15 K). The (liquid + liquid) equilibrium (LLE) for (water + 2-methoxy-2,4,4-trimethylpentane) from T = (283.15 to 318.15) K is determined. The LLE is also reported for the ternary system of (water + methanol + 2-methoxy-2,4,4-trimethylpentane) at T = (283.15 and 298.15) K. The UNIQUAC parameters were regressed to model VLE, excess enthalpy and LLE for the binary and ternary data with one set of parameters.  相似文献   

17.
The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol), (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography.The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents.The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents.  相似文献   

18.
The solubility of carbon dioxide in a series of 1-(2-hydroxyethyl)-3-methylimidazolium ([hemim]+) based ionic liquids (ILs) with different anions, viz. hexafluorophosphate ([PF6]?), trifluoromethanesulfonate ([OTf]?), and bis-(trifluoromethyl)sulfonylimide ([Tf2N]?) at temperatures ranging from 303.15 K to 353.15 K and pressures up to 1.3 MPa were determined. The solubility data were correlated using the Krichevsky–Kasarnovsky equation and Henry’s law constants were obtained at different temperatures. Using the solubility data, the partial molar thermodynamic functions of solution such as Gibbs free energy, enthalpy, and entropy were calculated. Comparison showed that the solubility of CO2 in the ILs studied follows the same behaviour as the corresponding conventional 1-ethyl-3-methylimidazolium ([emim]+) based ILs with the same anions, i.e. [hemim][NTf2] > [hemim][OTf] > [hemim][PF6] > [hemim][BF4].  相似文献   

19.
During recent last years, outstanding properties of ionic liquids such as low melting point, large liquid range and negligible volatility have turned them into possible volatile organic solvents replacers to break alcohol-alkane azeotropic mixtures. On this basis, two ionic liquids, butyltrimethylammoniumbis(trifluoromethylsulfonyl)imide, [BTMA][NTf2], and tributylmethylammoniumbis(trifluoromethylsulfonyl)imide, [TBMA][NTf2], were studied through ternary liquid+liquid equilibrium (LLE) of {alkane(1) + alcohol (2) + IL(3)} at T = 298.15 K and atmospheric pressure in order to consider the effect of ionic liquid cation alkyl chain length on the extraction process.The ILs capability as azeotrope breakers was determined by the calculation of parameters such as solute distribution ratio, β, and selectivity, S and this capability was compared with other bis (trifluoromethylsulfonyl)imide based ionic liquids from literature. The consistency of tie-line data was ascertained by applying the Othmer–Tobias and Hand equations. Finally, the experimental LLE were correlated by the Non Random Two Liquid (NRTL) thermodynamic model.  相似文献   

20.
(Vapour + liquid) equilibrium (VLE) data for the ternary systems (hexane + benzene), (hexane + cyclohexane), (benzene + cyclohexane), and (ethanol + water) with an ionic liquid as entrainer for extractive distillation were measured by headspace gas chromatography. As ionic liquids, 1-hexyl-3-methyl-imidazolium bis (trifluoromethyl-sulfonyl) imide [HMIM][BTI], 1-octyl-3-methyl-imidazolium bis (trifluoromethyl-sulfonyl) imide [OMIM][BTI], 1-octyl-3-methyl-imidazolium trifluoro-methanesulfonate [OMIM][OTF], and 1-butyl-3-methyl-imidazolium trifluoro-methanesulfonate [BMIM][OTF] were used. The experimental data show that the ionic liquids investigated have a great influence on the separation factors of the systems (hexane + benzene), (hexane + cyclohexane), and (benzene + cyclohexane). The experimental data were compared with the predicted results using mod. UNIFAC (Do). The predicted results are in good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号