首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
通过凝结时间、抗压强度、电阻率、浆体内部温度测试和水化产物分析,研究了20 ℃、35 ℃和50 ℃下矿渣(GGBFS)对铝酸盐水泥(CAC)早期水化行为的影响。结果表明,掺入矿渣会逐渐减小CAC 72 h的化学收缩,降低化学收缩速率峰值。20 ℃时,电阻率变化曲线出现了明显的晶相转变期,化学收缩曲线存在明显的诱导期; 35 ℃时,凝结时间延长,掺入矿渣抑制了电阻率的发展;50 ℃时,电阻率在接近24 h时显著降低,凝结时间显著缩短,掺入矿渣缓解了24 h电阻率的减小。矿渣-铝酸盐水泥体系的水化产物和抗压强度受养护温度的影响较大。20 ℃时,掺入40%(质量分数)矿渣减少了CAH10的生成量,降低了硬化浆体的强度;35 ℃和50 ℃时,1 d水化产物主要为C2AH8和少量C3AH6,掺入矿渣延缓了强度的倒缩。在28 d龄期时,不同养护温度下掺入矿渣均能促进C2ASH8的生成。  相似文献   

2.
在碳捕集、利用和封存(CCUS)井下,油井水泥因长期受井下高温、高压和高酸性流体的作用会遭受碳化腐蚀导致水泥环失效。为了模拟CO2地质封存井下碳化腐蚀环境,本文将油井水泥的主要单相矿物硅酸三钙(C3S)置于不同温度(30 ℃、60 ℃、90 ℃),并密封在8.0 MPa的气相或液相的CO2碳化环境下,采用XRD和TGA相结合的分析方法,分析水泥单矿C3S受CO2腐蚀环境的影响规律。根据非稳态Fick扩散的渗透理论模型,建立腐蚀产物定量分析结果与腐蚀龄期的数学模型,拟合得到C3S受CO2腐蚀后的产物生成系数,以此评价不同CO2腐蚀因素对C3S的影响程度。结果表明:在CO2气相环境中,温度升高将显著加剧对C3S的腐蚀且产生溶蚀现象;而在CO2液相环境下,高温(90 ℃)使C3S水化反应加剧并形成阻滞层,降低CO2对C3S的腐蚀速率。  相似文献   

3.
稠油热采常使用具有早强和耐高温特性的铝酸钙特种水泥完成固井作业,为保证固井安全和采油效率,需明确早期水热养护对水泥硬化体结构稳定性的影响。本文研究了20、50、80℃下水泥的强度发展、矿物相组成和微观结构。结果表明,水热养护过程中铝酸钙水泥中的钙铝黄长石、CAH10和C2AH8等主要矿物相逐步转变为胶结性差的颗粒状水榴石,导致硬化体结构疏松多孔,进而引发硬化体抗压强度衰退。掺入粉煤灰和矿渣无法有效抑制晶型转变和结构破坏,但六偏磷酸钠改性可使矿物相保持结构稳定性,六偏磷酸钠溶出的Na+、HPO-4与铝酸钙水泥溶出的Ca2+、[AlO4]5-反应生成水化磷铝酸钠钙(N-C-A-P-H)凝胶相产物,进一步提高了硬化体的致密度和胶结特性。  相似文献   

4.
苏美娟  王子明  赵攀  刘晓 《硅酸盐通报》2022,41(12):4172-4179
碱性和无碱速凝剂掺入水泥后的水化机理不同,导致应用性能存在明显差异。本文通过测试凝结时间和砂浆抗压强度等宏观性能对比了两种速凝剂的应用性能,并通过水化放热分析、XRD定量分析、热重分析和SEM微观形貌观察等微观方法综合分析了两者的早期水化历程。结果表明:碱性速凝剂加入水泥后,[Al(OH)4]-加快了水泥中石膏的消耗速度,水化初期生成大量钙矾石(AFt),促进了硅酸三钙(C3S)矿物的水化,缩短了水泥浆体的凝结时间并提高了砂浆的早期抗压强度,但石膏的加速消耗也使得单硫型水化硫铝酸钙(AFm)和水化铝酸钙(C-A-H)等水化产物提前生成,影响了水泥基材料的后期抗压强度发展;无碱速凝剂加入水泥后,[Al(OH)4]-和SO2-4在液相中生成了大量AFt,促进了铝酸三钙(C3A)和C3S矿物的水化,影响了氢氧化钙(CH)的结晶析出。值得注意的是,SO2-4不仅促进了C3A生成AFt的过程,也延缓了水泥中石膏的消耗及AFm和C-A-H等产物的生成,因此无碱速凝剂的加入除了明显提高早期抗压强度外,后期28 d抗压强度也不受影响。  相似文献   

5.
本文研究了植生混凝土的碱度及力学性能随CO2养护压力的变化规律,并结合X射线衍射定量相分析(XRD-QPA)、热重分析(TGA)及扫描电子显微镜(SEM)等方法,探讨了CO2养护压力对反应速率及产物生成的影响。结果表明:增大CO2养护压力可提高硅酸三钙(C3S)、硅酸二钙(C2S)及氢氧化钙(CH)的碳化速率,同时可快速生成碳化致密层,有利于延缓CH的生成与溶出;碳化反应生成的碳酸钙(CaCO3)及水化硅酸钙(C-S-H)凝胶增大了水泥石密实度,可有效提升植生混凝土的抗压强度。与常压CO2养护相比,在CO2养护压力为0.3 MPa的条件下养护1 h,植生混凝土3 d抗压强度提高了72.8%,28 d抗压强度提高了4.8%,28 d的pH值由11.4降低至8.2。适度提高CO2养护压力对植生混凝土降碱和增强效果良好。  相似文献   

6.
为了促进钢渣的资源化利用,克服纯钢渣粉活性低的缺点,将钢渣粉与矿渣粉按不同比例进行复配,并取代30%的水泥制备净浆。测试各试验组的抗压强度、水化放热速率和放热量,并对硬化浆体进行XRD、SEM和MIP测试。结果表明,当钢渣粉与矿渣粉的质量比例为1∶1时,最有利于提升水泥的抗压强度,而单掺30%钢渣粉的抗压强度最低。水化热测试发现,掺入30%纯钢渣粉的试验组具有最大的水化放热速率和水化放热量。XRD、SEM和MIP测试发现,掺入复合矿粉后生成新的水化产物Al2Mg4(OH)12(CO3)(H2O)3,硬化体更为致密,并且孔隙率和平均孔径均降低。  相似文献   

7.
通过测试水泥浆体的凝结时间、抗压强度、电阻率,同时结合水化产物分析及热力学模拟,研究了不同掺量钢渣粉对硫铝酸盐水泥水化行为的影响规律。结果表明,随着钢渣粉质量掺量的增大,初凝时间呈先延长后缩短的趋势,且在掺量为20%时达到最大值。在28 d龄期内,掺入钢渣粉的水泥硬化浆体抗压强度均小于未掺入钢渣粉的硬化浆体,但在龄期达到60 d和90 d时,掺入40%钢渣粉试样的抗压强度均大于未掺入钢渣粉的试样。钢渣粉与硫铝酸盐水泥复合浆体的电阻率在水化初始阶段随着钢渣粉掺量的增大而增大,在水化后期(约3 h后)则随钢渣粉掺量的增大而减小。在1 d龄期内,钢渣粉掺量为40%的试样中的钢渣粉发生了水化反应,使得水泥浆体在减速期的水化速率最大。由热力学模拟结果可知:在钢渣粉掺量为40%的试样中,C2S在10 h后开始进行水化反应,C2ASH8则在168 h后开始生成;当钢渣掺量大于15%时,随着钢渣粉掺量的增大,钙矾石和铝胶的生成量逐渐减少,C2ASH8的生成量逐渐增多。  相似文献   

8.
以苯乙烯磺酸钠、环氧树脂E54为原料,制备了一种用于提高油井水泥石抗CO2腐蚀的水性环氧树脂WEP。通过FTIR、1HNMR及TG分析了其化学结构和热稳定性。将制备的WEP分散到水中形成乳液,测试了乳液的分散性与稳定性。将WEP用于油井水泥石中,在模拟地层高温高压及CO2酸性环境条件下进行了水泥石腐蚀实验,通过抗压强度、热重分析、SEM以及XRD评价了水泥石的腐蚀程度。结果表明,WEP具有较好的环境应用热稳定性,其热分解温度为295℃。WEP具有良好的自乳化性能,乳液分散均匀,乳液滴粒径较小,且乳液稳定性高,在6000r/min离心分离条件下可稳定30min不分层。WEP可有效提高水泥石抗CO2腐蚀性能,水泥石在180℃、总压40 MPa、CO2分压10 MPa条件下,腐蚀90 d后,含WEP的改性水泥石抗压强度衰退率仅为14.7%,CaCO3质量分数仅为0.25%,均远低于对比水泥石。XRD和SEM结果表明,WEP改性的水泥石腐蚀后,其内部主要成分仍是水...  相似文献   

9.
在含CO2气体油藏中,CO2对油井固井水泥石的腐蚀给石油开采带来了严重的安全问题。基于CO2对水泥石的腐蚀机理、水泥浆各种外加剂的作用机理,通过实验来遴选水泥浆体系中防腐剂及其比例,并确定其他外加剂添加量,最终构建出能有效防止CO2腐蚀的水泥浆体系。此体系下的水泥浆需要的稠化时间能控制在3~5 h范围内,失水量小于50 mL,无自由液,水泥石在24 h内抗压强度大于14 MPa。所得的水泥浆和水泥石的其他各项性能也均符合室内实验和实际固井的要求。  相似文献   

10.
采用抗压强度试验、X射线衍射(XRD)试验、傅里叶红外光谱(FTIR)试验和电子扫描显微镜(SEM)试验研究了不同矿渣掺量的水泥石在5℃,5wt%MgSO4溶液环境下抗压强度、腐蚀产物组成及微观结构特性.结果表明:硫酸盐作为矿渣活性的激发剂,在腐蚀早期能够提高水泥石强度,体系中掺入矿渣能有效改善水泥石抗碳硫硅钙石型硫酸盐腐蚀(TSA)作用.未掺矿渣的普通硅酸盐水泥在5℃,5wt%MgSO4溶液环境中腐蚀产物为白色泥状碳硫硅钙石,其腐蚀类型为典型的碳硫硅钙石型硫酸盐腐蚀;当体系中掺入矿渣后,水泥石硫酸盐腐蚀类型逐渐由TSA型向石膏型转变.矿渣掺量为30%时,体系中既发现了TSA作用产物也发现了石膏型腐蚀产物,当矿渣掺量大于40%时,体系硫酸盐腐蚀类型以石膏型为主.  相似文献   

11.
本文研究了协同掺加铝酸三钙(C3A)和碳酸钙(CaCO3)对硅酸盐水泥早期水化及硬化性能的影响。用X射线衍射(XRD)、热重分析(TG)、扫描电子显微镜(SEM)等技术分析水化产物及显微结构。结果表明,协同掺加C3A和CaCO3会显著提高硅酸盐水泥的早期力学强度。当硅酸盐水泥中掺加15%(质量分数,下同)的C3A,并对应掺加5.6%的CaCO3时,其3 d、7 d、14 d抗压强度较参比样分别提高了28.8%、55.7%、26.8%。微观分析指出,协同掺加C3A和CaCO3,促进了水泥水化早期碳铝酸钙的生成,是提高水泥砂浆早期强度的主要原因。  相似文献   

12.
CO2碳化-水泥水化协同固化土是兼具固化增强和CO2永久封存双重效能的新颖技术。然而,碳化水泥固化土宏微观特征与耐侵蚀性的研究,目前明显偏少。通过抗压强度、扫描电镜、X射线衍射和硫酸盐侵蚀试验,深入评价CO2碳化-水泥协同固化土抗压强度、微观机制与耐侵蚀性。结果表明:水分软化作用引起湿水养护碳化试样抗压强度低于标准养护试样,二者高低与标准养护时间、碳化时间及施作顺序紧密相关;CO2碳化反应消耗水泥固化体系内部水化产物,生成细长棒状霰石和立方体状方解石,密集堆积于粒间孔隙和颗粒表面进而提高试样密实度与抗压强度;硫酸钠溶液浸泡试样整体完整性良好,仅局部有少量土粒脱落,水泥固化土抵抗硫酸盐侵蚀能力依次为B-7d>7d-C-1d>C-3d;三种试样抗压强度随浸泡时间变化规律基本一致,即抗压强度先快速下降,之后逐渐回升并有持续增长趋势。  相似文献   

13.
为解决弱碱单独激发碱矿渣胶凝材料(AASM)时存在的力学性能弱、矿渣反应程度低等问题,缓解AASM的操作危害性,本文采用Na2SiO3/Na2CO3复合激发矿渣,研究了复合激发剂组成对AASM凝结时间、抗压强度、水化产物及自收缩的影响,并评估了AASM的环境效益。结果表明:随着Na2CO3碱当量的增加,AASM缓凝效果较为明显,抗压强度也有所降低,但抗压强度的降低幅度随龄期增大而减小。通过加入Na2CO3,AASM水化产物种类增多,C-(A)-S-H的峰值强度随Na2CO3碱当量占比的增加呈现出先增加后降低的趋势,因而解释了AASM浆体自收缩的变化。另外,由CO2排放指数可以看出,Na2SiO3/Na2CO3复合激发矿渣较Na2SiO3单独激发更为清洁,环境效益显著。  相似文献   

14.
针对预制构件存在早期强度发展不足,后期体积稳定性差的缺点,以无水硫铝酸钙(C4A3■)和硬石膏(C■)作为调控胶凝材料,针对C4A3■对硅酸盐水泥体积稳定性和力学性能的影响机理进行了探讨,对制备体积稳定的早强硅酸盐水泥基胶凝材料具有一定的指导意义。先用自由膨胀率与抗压强度分析了C4A3■-PC水泥浆体的体积及力学性能变化规律,再用X射线衍射仪、热分析仪、压汞仪和扫描电镜探究了该体系膨胀及水化机理。结果表明:C4A3■能改善硅酸盐水泥的体积稳定性,提高其早期强度,加速水泥的水化进程。当C4A3■含量为10%、■摩尔比为11时,12h钙矾石(AFt)含量可达5.61%,28 d含量为8.51%。C4A3■和C■的水化作用会消耗硅酸盐矿物水化产生的Ca(OH)2。细针棒状的AFt生长在水泥硬化浆体的表面及孔隙中...  相似文献   

15.
三乙醇胺(TEA)作为外加剂常用于提高钢渣胶凝活性,但目前关于TEA对钢渣水化的研究仍集中在钢渣-水泥复合体系,难以明确TEA对钢渣水化特性的影响。本工作将TEA引入纯钢渣体系,通过抗压强度、水化热、热重、物相分析、络合能力测定和溶解特性分析来表征TEA络合作用下纯钢渣的水化特性。结果表明:TEA显著提高了硬化钢渣浆体早期及后期抗压强度,主要原因是TEA促进了钢渣中铝相(C3A、C12A7)和铁相(C2F)的水化及其与CaCO3之间的反应,生成了对抗压强度有利的单碳型水化碳铝酸盐[C4(A,F)■H11],从而提高了钢渣浆体的水化程度。TEA对水化的促进与TEA的络合作用有关,TEA可以与Ca2+、Al3+、Fe3+3种金属离子络合,在一定范围内(TEA与金属离子摩尔比小于等于1时),TEA与金属离子间的络合能力从强到弱依次为Fe3+、Al  相似文献   

16.
为研究单硫型水化硫铝酸钙(AFm)和水化铝酸钙(C3AH6)的Cl固结能力和机理,通过人工合成的方法采用C3A制备了高纯AFm与C3AH6,并研究了内掺、外渗Cl条件下2种物质固结Cl后的产物类型、微观形貌、Cl固结量和固结率。结果表明:C3AH6对内掺Cl的固结能力(最高可达75%)远高于AFm(稳定约为17%),该差异在内掺Cl含量相对较低的情况下尤为显著;对比AFm,Cl-与C3AH6的反应更迅速且更为彻底;C3AH6的固氯产物一致为Friedel盐,AFm则根据Cl-浓度及其不同引入方式分为Hc、Kuzel盐、Friedel盐以及高硫型水化硫铝酸钙(Aft...  相似文献   

17.
为实现燃煤固体废弃物和捕集后CO2的资源化利用,以煤基废弃物燃煤灰渣、脱硫石膏为主要原料,以矿渣为补充胶凝材料,研究了固废配比、矿化养护压力、矿化养护温度对加气混凝土抗压强度和CO2固定率的影响。通过XRD、SEM分析了不同矿化养护制度下的晶相结构和微观形貌,通过压汞法研究了不同养护工况对加气混凝土孔隙结构的影响。结果表明,合适的剩余水灰比有助于提高加气混凝土的CO2固定率和早期抗压强度;CO2养护压力由0.05 MPa上升至1.00 MPa时,加气混凝土的固碳率提高24.8%,抗压强度先上升后降低,养护压力在0.1 MPa时达到峰值;CO2养护温度由25℃上升至105℃时,加气混凝土固碳率和抗压强度先上升后下降,固碳率在45℃时达到最大值7.21%,抗压强度在65℃时达最大值3.53 MPa;通过XRD和SEM分析可知,主要矿化产物为碳酸钙,并以方解石和球霰石的形态存在,较高养护压力(≥0.2 MPa)易导致产物界面出现细微裂缝,而随养护温度升高,矿化产物与水化产物同时出现;...  相似文献   

18.
采用板状刚玉颗粒和细粉、α-Al2O3微粉、碳酸钙微粉、铝酸钙水泥(CAC)等原料制备了刚玉质浇注料,研究了20℃下碳酸钙微粉对CAC水化速率、水化产物的相组成和显微结构的影响,同时也探究了碳酸钙微粉加入量(0~1.5%,w)对CAC结合刚玉质浇注料养护过程中强度的影响。结果表明:在20℃下,未加入碳酸钙微粉时,CAC水化速率较慢,水化产物主要为针柱状的CAH10;加入碳酸钙微粉后,CAC水化速率明显提升,且其主要的水化产物从针柱状的CAH10转变成片状的C4ACH11。碳酸钙微粉的引入加速了CAC的水化,使得水化产物数量增多,CAC结合浇注料的养护强度显著提升。  相似文献   

19.
近些年来,水泥的低碳化成为国内外的研究热点,利用活性矿物掺和料取代水泥是一种有效降低CO2排放量的方法。为验证活化煤矸石作为水泥矿物掺和料的可行性,研究了活化煤矸石对水泥流变性能、力学性能、水化产物及水化程度的影响,揭示了水胶比、龄期及活化煤矸石掺量等对水泥胶砂试件抗压和抗折强度的影响,并利用XRD、SEM和TG/DTG等表征活化煤矸石对水泥水化产物和微观结构的影响。结果表明,活化煤矸石水泥的流变性能对水胶比的变化更加敏感。将活化煤矸石掺入水泥中,能够有效降低水泥早期的水化速率。活化煤矸石含有大量的活性SiO2和Al2O3,具有很强的二次水化反应活性。二次水化产物水化硅酸钙和水化铝酸钙凝胶能够填充水泥机体的孔隙,提升水泥基体的强度。与掺30%(质量分数)石英粉的试件相比,掺30%(质量分数)活化煤矸石试件的28 d抗折和抗压强度分别提升了11.69%和11.82%。  相似文献   

20.
硅酸三钙(C3S)体系及铝酸三钙-二水石膏(C3A-CH2) 体系作为主要的硅酸盐水泥矿物相,对水泥新拌阶段及后续性能发展阶段有尤为重要的影响。而水泥在诱导期内的水化进程很大程度上决定了其后续性能的发展。鉴于此,本文回顾了水泥水化的热力学原理,重点综述了目前关于水泥水化诱导期开始及结束时作为主要矿物体系的C3S体系和C3A-CH2体系的水化进程及机理的研究进展,以及不同矿物体系诱导期的成因。但限于目前的研究手段,对于水泥水化诱导期内各种矿物体系的相互作用和相互影响仍未完全厘清,还需要进一步的探索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号