首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
Columnar and highly oriented (100) BaTiO3 and SrTiO3 thin films were prepared by a chelate-type chemical solution deposition (CSD) process by manipulation of film deposition conditions and seeded growth techniques. Randomly oriented columnar films were prepared on platinum-coated Si substrates by a multilayering process in which nucleation of the perovskite phase was restricted to the substrate or underlying layers by control of layer thickness. The columnar films displayed improvements in dielectric constant and dielectric loss compared to the fine-grain equiaxed films that typically result from CSD methods. Highly oriented BaTiO3 and SrTiO3 thin films were fabricated on LaAlO3 by a seeded growth process that appeared to follow a standard "two-step" growth mechanism that has been previously reported. The film transformation process involved the bulk nucleation of BaTiO3 throughout the film, followed by the consumption of this matrix by an epitaxial overgrowth process originating at the seed layer. Both BaTiO3 and PbTiO3 seed layers were effective in promoting the growth of highly oriented (100) BaTiO3 films. Based on the various processing factors that can influence thin film microstructure, the decomposition pathway involving the formation of BaCO3 and TiO2 appeared to dictate thin film microstructural evolution.  相似文献   

2.
The process-structure-reflectance interrelationships for TiB2 films prepared by CVD were determined using statistically designed experiments. A hot wall CVD reactor employing graphite substrates and the TiCl4+ BCl3+ H2 reagent system were used at pressures of 2.7 and 6.7 kPa. Single-phase polycrystalline TiB2 films were obtained. An increasing percentage of the grains were oriented with their (001) planes parallel to the substrate as the deposition temperature was increased and as the BCl3:TiCl4 ratio decreased. Grain size increased from ∼0.5 to 3 µm as the deposition temperature was increased from 900° to 1100°C and as the coating rate was decreased from 0.6 to 0.1 µm/min. Fine-grained, smooth, highly reflective films were obtained at low deposition temperatures and high BCl3:TiCl4 ratios.  相似文献   

3.
The deposition of boron carbide (B13C2) onto graphite substrates was accomplished by using a hot-wall chemical vapor deposition (CVD) reactor at a pressure of 10.1 kPa in the temperature range of 1000°–1400°C. A modified impinging-jet geometry was used to simplify the mass-transfer analysis. Coatings were characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The surface morphology was composed of well-defined facets, the size of which was dependent on the growth rate and deposition time, as would be expected from a competitive growth mechanism. TEM micrographs of the coating showed long, columnar grains that emanated from a narrow nucleation zone. The growth rate could be adequately described by a first-order kinetic expression, with respect to the bulk gas phase boron chloride (BCl3) concentration. The activation energy of the kinetic expression was estimated to be 93.1 kJ/mol. It was proposed that the deposition was limited by the adsorption of (BCl3) onto the substrate surface.  相似文献   

4.
Selective nucleation of LiNbO3 nanocrystals on the steps was observed during the initial stage of LiNbO3 film growth in an α-Al2O3 (0001) substrate with a multiatomic step structure. In addition, stress stored in the nanocrystals as a result of the different thermal expansion coefficients of the film and the substrate caused band-gap widening. As the size of the nanocrystals decreased, the band gap shifted to a higher energy.  相似文献   

5.
Atomic layer deposition (ALD) has been successfully utilized for the conformal and uniform deposition of ultrathin titanium dioxide (TiO2) films on high-density polyethylene (HDPE) particles. The deposition was carried out by alternating reactions of titanium tetraisopropoxide and H2O2 (50 wt% in H2O) at 77°C in a fluidized bed reactor. X-ray photoelectron spectroscopy confirmed the deposition of TiO2 and scanning transmission electron microscopy showed the conformal TiO2 films deposited on polymer particle surfaces. The TiO2 ALD process yielded a growth rate of 0.15 nm/cycle at 77°C. The results of inductively coupled plasma atomic emission spectroscopy suggested that there was a nucleation period, which showed the reaction mechanism of TiO2 ALD on HDPE particles without chemical functional groups. TiO2 ALD films deposited at such a low temperature had an amorphous structure and showed a much weaker photoactivity intensity than common pigment-grade anatase TiO2 particles.  相似文献   

6.
The aging behavior of the solid-solution series (Pb(Mg1/3Nb2/3)O3)1− x –(PbTiO3) x (PMN1− x −PT x ) prepared by chemical-solution deposition without seeding layers was investigated. A strong influence of the rapid thermal annealing step on the film density was determined. The best nucleation and density of the thin films occurred when each deposited layer was separately pyrolyzed and crystallized. The thin-film microstructure was investigated using scanning electron microscopy. Conventional capacitance-voltage and hysteresis measurements were performed. For the first time, investigations on the fatigue performance and the leakage current for alternating-current and direct-current voltage were executed, which are important for the reliability in device applications.  相似文献   

7.
A process of coating Al2O3 particles with TiO2 by hydrolysis of Ti(OC4H9)4 using chemical vapor deposition in a rotary reactor has been developed. The process resulted in (1) a coating film of TiO2 which was compact and uniform with the fraction of TiO2 being 0.1%–10.0% and (2) an amorphous TiO2 coating at a low reaction temperature converted to anatase at a reaction temperature higher than 673 K.  相似文献   

8.
Deposition of α-Si3N4 from SiF4 and NH3 was systematically studied using an axisymmetric, vertical hot-wall reactor in the temperature range of 1340° to 1490°C. The relationship between process variables and deposition behavior was identified. The deposition process was most strongly influenced by temperature. In general, deposition rate increased exponentially with increased deposition temperature, although reagent depletion in the axial direction caused a rapid decrease in the deposition rate. The deposition rate increased moderately with increased flow rate or decreased NH3/SiF4 molar ratio. The decomposition characteristic of pure NH3 and SiF4 were studied utilizing mass spectroscopy and compared to thermodynamic predictions in order to assess their influences on the Si3N4 deposition process. Finally, the crystallography of Si3N4 deposits was correlated as a function of temperature and deposition rate.  相似文献   

9.
Highly crystallized BaWO4 films have been prepared on a tungsten substrate in an alkaline solution containing barium ions by an electrochemical method with a constant direct current density of 1 mA/cm2 at room temperature (25°C). The average grain size was about 13 μm, and the thickness about 9 μm after a treatment time of 35 min. The dependence of cell voltage on deposition time was divided into three steps: conduction, anodic oxidation, and breakdown steps. The BaWO4 film formed during the first step. Electrochemical dissolution of metal tungsten occurred with an accompanying positive change of overpotential in the first step. The crystallization of BaWO4 was characterized by three-dimensional nucleation. In the second step, an amorphous tungsten oxide film formed, thereby increasing the potential. An electrical breakdown occurred in the third step, and the breakdown voltage (about 90 V) was practically the same as those of anodic tungsten oxide films.  相似文献   

10.
Zirconia (ZrO2) was chemical vapor infiltrated (CVI) into a partially sintered MoSi2 body (preform) by using zirconium n -propoxide (Zr(OC3H7)4) as a gas precursor. Infiltration distances at different conditions were compared with the calculated results. Chemical vapor deposition (CVD) film growth rates of ZrO2 were measured, and the data were incorporated into the model calculations. Two models were used to analyze the observed infiltration distances. Initially a conventional model assuming a pore with constant radius (SP model) was used. With this model, it was possible to predict the approximate infiltration distance. However, the model cannot predict pore closure and the infiltration distances for a variety of CVI conditions. Secondly, a newly proposed model (PC model) from a previous paper was applied to calculate the infiltration distance. Using this model, it was possible to predict the occurrence of pore closure or the formation of the deposition layer on the preform surface.  相似文献   

11.
Silver and gold nanoparticles were synthesized by the sol–gel process in SiO2, TiO2, and ZrO2 thin films. A versatile method, based on the use of coordination chemistry, is presented for stabilizing Ag+ and Au3+ ions in sol–gel systems. Various ligands of the metal ions were tested, and for each system it was possible to find a suitable ligand capable of stabilizing the metal ions and preventing gold precipitation onto the film surface. Thin films were prepared by spin-coating onto glass or fused silica substrates and then heat-treated at various temperatures in air or H2 atmosphere for nucleating the metal nanoparticles. The Ag particle size was about 10 nm after heating the SiO2 film at 600°C and the TiO2 and ZrO2 films at 500°C. After heat treatment at 500°C, the Au particle size was 13 and 17 nm in the TiO2 and ZrO2 films, respectively. The films were characterized by UV–vis optical absorption spectroscopy and X-ray diffraction, for studying the nucleation and the growth of the metal nanoparticles. The results are discussed with regard to the embedding matrix, the temperature, and the atmosphere of the heat treatment, and it is concluded that crystallization of TiO2 and ZrO2 films may hinder the growth of Ag and Au particles.  相似文献   

12.
Epitaxially grown single-crystal perovskite (100) three-axis-oriented (Ba0.7Sr0.3)TiO3 thin films were prepared on a (100) platinum-coated (100) magnesium oxide (MgO) single-crystal substrate by the chemical solution deposition method using a solution derived from Ba(CH3COO)2, Sr(CH3COO)2, and Ti(O- i -C3H7)4.
The growth of the film was found to depend on the annealing condition. A (Ba,Sr)TiO3 thin film annealed at 1073 K was found to be a single crystal by transmission electron microscope. The single-crystal film exhibited a (100) three-axis orientation that followed the (100) orientation of the Pt substrate, as observed from an X-ray pole figure measurement and selected area electron diffraction patterns.  相似文献   

13.
The effect of a 20-nm thick TiO2 seeding layer on the growth of a Bi3.15Nd0.85Ti3O12 (BNT) thin film on Pt(111) thin-film substrates has been studied. Under otherwise identical deposition process conditions, the BNT film could be turned from a highly random orientation to a (200) preference orientation by adding the seeding layer. Field-emission scanning electron microscope result reveals that the BNT thin film with the TiO2 seeding layer is composed of fine grains with smaller sizes about 80–150 nm in diameter. The P r and E c values of the BNT thin film and BNT film with the TiO2 seeding layer were 36 and 16 μC/cm2, and 96.9 and 92 kV/cm at a voltage of 12 V, respectively. The fatigue test exhibited a very strong fatigue endurance up to 109 cycles for both films. The leakage current densities were generally in the order of 10−6–10−5 A/cm2 for both samples.  相似文献   

14.
A thermo gravimetric study of the oxidation behavior of chemically vapor-deposited amorphous and crystalline Si3N4 (CVD Si3N4) was made in dry oxygen (0.1 MPa) at 1550° to 1650°C. The specimens were prepared under various deposition conditions using a mixture of SiCl4, NH3, and H2 gases. The crystalline CVD Si3N4 indicated a parabolic oxidation kinetics over the whole temperature range, whereas the amorphous CVD Si3N4 changed from a parabolic to a linear law with increased temperature. The oxidation mechanism is discussed in terms of the activation energy for the oxidation and the microstructure of the formed oxide films.  相似文献   

15.
The possibility of eliminating finger or vermicular growth of α-Al2O3 particles obtained by calcination of boehmite was examined. Heterogeneous precipitation of boehmite in a well-dispersed θ-Al2O3 suspension was first prepared, in which the mass ratio of boehmite to θ-crystallite was evaluated to form agglomerates of similar sizes that will form α-Al2O3 crystallites of <100 nm in diameter. θ- to α-phase transformation of alumina experiences a nucleation and growth mechanism, with the critical size of nucleation being ∼25 nm for θ-Al2O3 and the size for accomplishment of transformation followed by finger growth being ∼100 nm. Hence, fabricating agglomerates that would form α-Al2O3 crystallites with sizes <100 nm accompanied with appropriate thermal treatments can be a method for obtaining α-Al2O3 crystallites free of finger growth. It is found that proper preparation of the agglomerate with appropriate size may initiate a simultaneous and lower temperature θ- to α-Al2O3 phase transformation for such powder systems, substantially limiting the mass transfer among the newly formed α-Al2O3 particles. Moreover, α-Al2O3 crystallites free of finger growth can be obtained.  相似文献   

16.
Titanium oxide/aluminum oxide films have been deposited using molecular beam epitaxy methods and characterized by reflection high-energy electron diffraction and transmission electron microscopy techniques. Growth on silicon substrates below 973 K resulted in primarily amorphous multilayers. At 1323 K, the deposition of titanium in an oxygen atmosphere on (0001) Al2O3 substrates resulted in films of Ti2O3. These films consisted of small domains, up to 60 nm, slightly misoriented from a [1120] ∥ [1120] orientation relationship. Two variants of Ti2O3 were observed due to multiple positioning during growth. Closing the titanium shutter during growth resulted in an oriented TiO2 film.  相似文献   

17.
Continuous α-Fe2O3 films grown on bulk (0001)Al2O2 substrates by low-pressure chemical vapor deposition have been studied by transmission electron microscopy and the observations compared to those obtained from discontinuous films at an earlier stage of the growth process. Plan-view specimens revealed significant thermal stress in the continuous films, while cross-sectional specimens showed that cracking occurs in thicker films. The free surface of the film and the film/substrate interface appeared sharp and flat, apart from growth ledges and steps. Weak-beam imaging revealed a hexagonal misfit dislocation network consisting of perfect edge dislocations. Fine structure in the selected-area diffraction patterns which corroborates these observations is also discussed. The misfit network of partial dislocations previously observed in the discontinuous films was not observed for the continuous films, indicating an effect of film thickness, growth rate, or surface preparation on the Fe2O3/(0001)Al2O3 interface structure.  相似文献   

18.
In this study, a dense strontium-doped lanthanum chromite (La0.8Sr0.2CrO3, LSC) thin layer was designed to protect a stainless-steel (SUS430) substrate from carbon deposition. The LSC layer was coated onto an SUS430 substrate by a dipping technique from a precursor solution of La, Sr and Cr nitrates, acetylacetone (acac), and 2-methoxyethanol. The effect of AcAc on the phase behavior and microstructure evolution of the LSC thin films was investigated. After being heat-treated at 800°C in air, the thin film was found to consist of perovskite LaCrO3, Mn1.5Cr1.5O4, and Cr2O3 phases. The addition of a chelating agent, acac, to the precursor solution led to a reduction in the formation of the strontium chromite (SrCrO4) phase. As a consequence, a thin film having a dense microstructure could be obtained. It was confirmed by Fourier-tranform Raman spectroscopic analysis and FESEM observations that the carbon deposited on the uncoated SUS430 substrate was amorphous with a spherical morphology. The LSC thin film thus obtained was found to be very effective at preventing carbon deposition when it was heat-treated under a dry hydrocarbon atmosphere.  相似文献   

19.
The growth behavior, time of nucleation, and morphology of Ca(OH)2 crystals formed during the hydration of Ca3SiO5, at 15°, 25°, and 35°C at water-solid ratios ( w/s ) from 0.3 to 5.0 were studied by optical microscopy. In samples with w/s >0.5 growth of Ca(OH)2 in the c -axis direction is initially dominant. Growth in this direction ends after a few hours, but growth perpendicular to the c axis continues for several days and produces a dendritic morphology. Growth behavior is not so well defined for w/s <0.5, in part because of the large number of unhydrated particles engulfed. Increasing temperature resulted in an increase in the number of Ca(OH)2 nuclei and a decrease in nucleation time and crystal size. Increasing the w/s ratio improved the euhedral character of the Ca(OH)2 crystals, decreased the number of engulfed Ca3SiO5 particles, and increased the nucleation time. Dendritic morphology was most pronounced in the samples for which w/s = 1. Growth rates and the ultimate size of the Ca(OH)2 crystals varied within a given sample. The effects of temperature and the w/s ratio on the heat evolved during the hydration were studied by isothermal calorimetry. The times of nucleation of crystalline Ca(OH)2 estimated from calorimetry were similar to those derived from growth curves determined by optical microscopy.  相似文献   

20.
The purpose of this study was to identify and correlate the microstructural and luminescence properties of europium-doped Y2O3 (Y1– x Eu x )2O3 thin films deposited by metallorganic chemical vapor deposition (MOCVD), as a function of deposition time and temperature. The influence of deposition parameters on the crystallite size and microstructural morphology were examined, as well as the influence of these parameters on the photoluminescence emission spectra. (Y1– x Eu x )2O3 thin films were deposited onto (111) silicon and (001) sapphire substrates by MOCVD. The films were grown by reacting yttrium and europium tris(2,2,6,6-tetramethyl–3,5-heptanedionate) precursors with an oxygen atmosphere at low pressures (5 torr (1.7 × 103 Pa)) and low substrate temperatures (500°–700°C). The films deposited at 500°C were smooth and composed of nanocrystalline regions of cubic Y2O3, grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600°C developed, with increasing deposition time, from a flat, nanocrystalline morphology into a platelike growth morphology with [111] orientation. Monoclinic (Y1– x Eu x )2O3 was observed in the photoluminescence emission spectra for all deposition temperatures. The increase in photoluminescence emission intensity with increasing postdeposition annealing temperature was attributed to the surface/grain boundary area-reduction effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号