首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Multiferroic heterostructures composed of complex oxide thin films and ferroelectric single crystals have aroused considerable interest due to the electrically switchable strain and charge elements of oxide films by the polarization reversal of ferroelectrics. Previous studies have demonstrated that the electric‐field‐control of physical properties of such heterostructures is exclusively due to the ferroelectric domain switching‐induced lattice strain effects. Here, the first successful integration of the hexagonal ZnO:Mn dilute magnetic semiconductor thin films with high performance (111)‐oriented perovskite Pb(Mg1/3Nb2/3)O3‐PbTiO3 (PMN‐PT) single crystals is reported, and unprecedented charge‐mediated electric‐field control of both electronic transport and ferromagnetism at room temperature for PMN‐PT single crystal‐based oxide heterostructures is realized. A significant carrier concentration‐tunability of resistance and magnetization by ≈400% and ≈257% is achieved at room temperature. The electric‐field controlled bistable resistance and ferromagnetism switching at room temperature via interfacial electric charge presents a potential strategy for designing prototype devices for information storage. The results also disclose that the relative importance of the strain effect and interfacial charge effect in oxide film/ferroelectric crystal heterostructures can be tuned by appropriately adjusting the charge carrier density of oxide films.  相似文献   

2.
Manipulating magnetic anisotropy in complex oxide heterostructures has attracted much attention. Here, three interface‐engineering approaches are applied to address two general issues with controlling magnetic anisotropy in the La2/3Sr1/3MnO3 heterostructure. One is the paradox arising from the competition between Mn3d–O2p orbital hybridization and MnO6 crystal field. The other is the interfacial region where the nonuniform Mn? O bond length d and Mn? O? Mn bond angle θ disturb the structural modulation. When the interfacial region is suppressed in the interface‐engineered samples, the lateral magnetic anisotropy energy is increased eighteen times. The d‐mediated anisotropic crystal filed that overwhelms the orbital hybridization causes the lateral symmetry breaking of the Mn 3dx2?y2 orbital, resulting in enhanced magnetic anisotropy. This is different from the classic Jahn–Teller effect where the lateral symmetry is always preserved. Moreover, the quantitative analysis on X‐ray linear dichroism data suggests a direct correlation between Mn 3dx2?y2 orbital symmetry breaking and magnetic anisotropy energy. The findings not only advance the understanding of magnetic anisotropy in manganite heterostructures but also can be extended to other complex oxides and perovskite materials with correlated degrees of freedom.  相似文献   

3.
To understand the origin of the increase in critical current density of rare earth barium cuprate superconductor thin films with decreasing thickness, a series of sub‐300‐nm EuBa2Cu3O7?δ thin films deposited on SrTiO3 substrates are studied by X‐ray diffraction and electrical transport measurements. The out‐of‐plane crystallographic mosaic tilt and the out‐of‐plane microstrain both increase with decreasing film thickness. The calculated density of c‐axis threading dislocations matches the extent of the observed low‐field enhancement in critical current density for fields applied parallel to c. The in‐plane mosaic twist and in‐plane microstrain are both around twice the magnitude of the out‐of‐plane values, and both increase with decreasing film thickness. The results are consistent with the observed stronger field enhancement in critical current density for fields applied parallel to ab. The lattice parameter variation with thickness is not as expected from consideration of the biaxial strain with the substrate, indicative of in‐plane microstrain accommodation by oxygen disorder. Collectively, the results point to an enhancement of critical current by interfacial strain induced oxygen disorder which is greatest closest to the film‐substrate interface. The findings of this study have important implications for other thin functional oxide perovskite films and nanostructures where surface and interfacial strains dominate the properties.  相似文献   

4.
Electrical manipulation of lattice, charge, and spin is realized respectively by the piezoelectric effect, field‐effect transistor, and electric field control of ferromagnetism, bringing about dramatic promotions both in fundamental research and industrial production. However, it is generally accepted that the orbital of materials are impossible to be altered once they have been made. Here, electric field is used to dynamically tune the electronic‐phase transition in (La,Sr)MnO3 films with different Mn4+/(Mn3+ + Mn4+) ratios. The orbital occupancy and corresponding magnetic anisotropy of these thin films are manipulated by gate voltage in a reversible and quantitative manner. Positive gate voltage increases the proportion of occupancy of the orbital and magnetic anisotropy that were initially favored by strain (irrespective of tensile and compressive), while negative gate voltage reduces the concomitant preferential orbital occupancy and magnetic anisotropy. Besides its fundamental significance in orbital physics, these findings might advance the process towards practical oxide‐electronics based on orbital.  相似文献   

5.
In the pursuit of novel functionalities by utilizing the lattice degree of freedom in complex oxide heterostructure, the control mechanism through direct strain manipulation across the interfaces is still under development, especially with various stimuli, such as electric field, magnetic field, light, etc. In this study, the superlattices consisting of colossal‐magnetoresistive manganites La0.7Sr0.3MnO3 (LSMO) and photostrictive SrRuO3 (SRO) have been designed to investigate the light‐dependent controllability of lattice order in the corresponding functionalities and rich interface physics. Two substrates, SrTiO3 (STO) and LaAlO3 (LAO), have been employed to provide the different strain environments to the superlattice system, in which the LSMO sublayers exhibit different orbital occupations. Subsequently, by introducing light, we can modulate the strain state and orbital preference of LSMO sublayers through light‐induced expansion of SRO sublayers, leading to surprisingly opposite changes in photoresistivity. The observed photoresistivity decreases in the superlattice grown on STO substrate while increases in the superlattice grown on LAO substrate under light illumination. This work has presented a model system that demonstrates the manipulation of orbital–lattice coupling and the resultant functionalities in artificial oxide superlattices via light stimulus.  相似文献   

6.
Transparent metallic oxides are pivotal materials in information technology, photovoltaics, or even in architecture. They display the rare combination of metallicity and transparency in the visible range because of weak interband photon absorption and weak screening of free carriers to impinging light. However, the workhorse of current technology, indium tin oxide (ITO), is facing severe limitations and alternative approaches are needed. AMO3 perovskites, M being a nd1 transition metal, and A an alkaline earth, have a genuine metallic character and, in contrast to conventional metals, the electron–electron correlations within the nd1 band enhance the carriers effective mass (m*) and bring the transparency window limit (marked by the plasma frequency, ωp*) down to the infrared. Here, it is shown that epitaxial strain and carrier concentration allow fine tuning of optical properties (ωp*) of SrVO3 films by modulating m* due to strain‐induced selective symmetry breaking of 3d‐t2g(xy, yz, xz) orbitals. Interestingly, the DC electrical properties can be varied by a large extent depending on growth conditions whereas the optical transparency window in the visible is basically preserved. These observations suggest that the harsh conditions required to grow optimal SrVO3 films may not be a bottleneck for their future application.  相似文献   

7.
The most critical challenge faced in realizing a high efficiency photoelectrochemical water splitting process is the lack of suitable photoanodes enabling the transfer of four electrons involved in the complex oxygen evolution reaction (OER). Uranium oxides are efficient catalysts due to their wide range optical absorption (Eg ≈ 1.8–3.2 eV), high photoconductivity, and multiple valence switching among uranium centers that improves the charge propagation kinetics. Herein, thin films of depleted uranium oxide (U3O8) are demonstrated grown via chemical vapor deposition effectively accelerate the OER in conjunction with hematite (α‐Fe2O3) overlayers through a built‐in potential at the interface. Density functional theory simulations demonstrate that the multivalence of U and Fe ions induce the adjustment of the band alignment subject to the concentration of interfacial Fe ions. In general, the equilibrium state depicts a type II band edge as the favored alignment, which improves charge‐transfer processes as observed in transient and X‐ray absorption (TAS and XAS) spectroscopy. The enhanced water splitting photocurrent density of the heterostructures (J = 2.42 mA cm?2) demonstrates the unexplored potential of uranium oxide in artificial photosynthesis.  相似文献   

8.
It is demonstrated that electric transport in Bi‐deficient Bi1‐δFeO3 ferroelectric thin films, which act as a p‐type semiconductor, can be continuously and reversibly controlled by manipulating ferroelectric domains. Ferroelectric domain configuration is modified by applying a weak voltage stress to Pt/Bi1‐δFeO3/SrRuO3 thin‐film capacitors. This results in diode behavior in macroscopic charge‐transport properties as well as shrinkage of polarization‐voltage hysteresis loops. The forward current density depends on the voltage stress time controlling the domain configuration in the Bi1‐δFeO3 film. Piezoresponse force microscopy shows that the density of head‐to‐head/tail‐to‐tail unpenetrating local domains created by the voltage stress is directly related to the continuous modification of the charge transport and the diode effect. The control of charge transport is discussed in conjunction with polarization‐dependent interfacial barriers and charge trapping at the non‐neutral domain walls of unpenetrating tail‐to‐tail domains. Because domain walls in Bi1‐δFeO3 act as local conducting paths for charge transport, the domain‐wall‐mediated charge transport can be extended to ferroelectric resistive nonvolatile memories and nanochannel field‐effect transistors with high performances conceptually.  相似文献   

9.
Modulating the orbital configuration of ferromagnetic metal (FM)/metal‐oxide (MO) interfaces is crucial for obtaining a controllable interfacial magnetism for constructing energy‐efficient magnetic memory and logic devices. The traditional works of orbital regulation depend on external fields, such as electric field, temperature field, and stress field. This work proposes a novel orbital modulation strategy by modifying the coordination environment of FM/MO interface with nitrogen (N) incorporation. By preparing a Fe/MgO bilayer at a N2 atmosphere, N atoms occupy the interstitial sites of the Fe lattice, which induces a charge redistribution at the Fe/MgO interface and toggles a prominent orbital reconstruction of Fe with an increment of out‐of‐plane orbital occupancy. Therefore, the orbital magnetism is tuned effectively, which remarkably strengthens the interfacial magnetic anisotropy energy by 0.6 erg cm?2 and enables a broad magnetic anisotropy tunability from in‐plane to perpendicular direction. Besides, the Fe thickness for maintaining perpendicular magnetic anisotropy extends from less than 1 to 3 nm, which is favorable for improving the signal‐to‐noise ratio and stability of devices in nanoscale. These findings provide an external‐field‐independent strategy of orbital engineering for tailoring obit‐controlled performance at FM/MO heterointerfaces, which practically advances the magnetic storage and logic devices.  相似文献   

10.
Combining transition metal oxide catalysts with conductive carbonaceous material is a feasible way to improve the conductivity. However, the electrocatalytic performance is usually not distinctly improved because the interfacial resistance between metal oxides and carbon is still large and thereby hinders the charge transport in catalysis. Herein, the conductive interface between poorly conductive NiO nanoparticles and semi‐conductive carbon nitride (CN) is constructed. The NiO/CN exhibits much‐enhanced oxygen evolution reaction (OER) performance than corresponding NiO and CN in electrolytes of KOH solution and phosphate buffer saline, which is also remarkably superior over NiO/C, commercial RuO2, and mostly reported NiO‐based catalysts. X‐ray photoelectron spectroscopy and extended X‐ray absorption fine structure spectrum reveal that a metallic Ni–N bond is formed between NiO and CN. Density functional theory calculations suggest that NiO and CN linked by a Ni–N bond possess a low Gibbs energy for OER intermediate adsorptions, which not only improves the transfer of charge but also promotes the transmission of mass in OER. The metal–nitrogen bonded conductive and highly active interface pervasively exists between CN and other transition metal oxides including Co3O4, CuO, and Fe2O3, making it promising as an inexpensive catalyst for efficient water splitting.  相似文献   

11.
Multicomponent magnetic phase diagrams are a key property of functional materials for a variety of uses, such as manipulation of magnetization for energy efficient memory, data storage, and cooling applications. Strong spin‐lattice coupling extends this functionality further by allowing electric‐field‐control of magnetization via strain coupling with a piezoelectric. Here this work explores the magnetic phase diagram of piezomagnetic Mn3NiN thin films, with a frustrated noncollinear antiferromagnetic (AFM) structure, as a function of the growth induced biaxial strain. Under compressive strain, the films support a canted AFM state with large coercivity of the transverse anomalous Hall resistivity, ρxy, at low temperature, that transforms at a well‐defined Néel transition temperature (TN) into a soft ferrimagnetic‐like (FIM) state at high temperatures. In stark contrast, under tensile strain, the low temperature canted AFM phase transitions to a state where ρxy is an order of magnitude smaller and therefore consistent with a low magnetization phase. Neutron scattering confirms that the high temperature FIM‐like phase of compressively strained films is magnetically ordered and the transition at TN is first‐order. The results open the field toward future exploration of electric‐field‐driven piezospintronic and thin film caloric cooling applications in both Mn3NiN itself and the broader Mn3AN family.  相似文献   

12.
Metallic delafossites ABO2, as the new benchmark of ultra‐high conductive oxides, have recently attracted great interest. The harsh processing conditions and dimensional sizes obviously limit the fundamental sciences and technological applications. Here, a low‐cost and facile solution approach is realized to synthesize epitaxial metallic ABO2 thin films including PtCoO2, PdCoO2, and PdCrO2 with a dimension up to two‐inches in diameter, showing ultra‐high room temperature conductivity. The electrical properties, growth mechanisms, and potential technical applications including transparent conducting films and hydrogen evolution reaction activity are unveiled. The achievements of epitaxial metallic delafossites ABO2 thin films through solution methods will pave the route to producing wafer‐scaled ultra‐high conductive metallic delafossites.  相似文献   

13.
Anodic electrochromic (EC) oxides are of major interest as counter electrodes for smart window applications owing to their unique optical properties upon charge insertion and extraction. However, performance optimization of such oxides has been hampered by limited understanding of their EC mechanism, particularly in Li+‐conducting electrolytes. This paper reports on NiOx films with 1.16 ≤ x ≤ 1.32, prepared by sputter deposition. These films are immersed in an electrolyte of lithium perchlorate in propylene carbonate, and EC properties are studied by cyclic voltammetry and in situ optical transmittance measurements. The electrochromism is significantly enhanced at large values of x. It has been found that charge exchange in Ni oxide is mainly due to surface processes and involves both cations and anions from the electrolyte, which is different from the case of cathodic EC materials such as WO3. Whereas previous studies of Ni oxide have focused on cation intercalation, the cation/anion‐based mechanism presented here offers a new paradigm for designing and developing EC devices such as smart windows for energy efficient buildings.  相似文献   

14.
The softness and anisotropy of organic semiconductors offer unique properties. Recently, solution‐sheared thin‐films of 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐P) with nonequilibrium single‐crystal domains have shown much higher charge mobilities than unstrained ones (Nature 2011 , 480, 504). However, to achieve efficient and targeted modulation of charge transport in organic semiconductors, a detailed microscopic understanding of the structure–property relationship is needed. In this work, motivated by the experimental studies, the relationship between lattice strain, molecular packing, and charge carrier mobility of TIPS‐P crystals is elucidated. By employing a multiscale theoretical approach combining nonequilibrium molecular dynamics, first‐principles calculations, and kinetic Monte Carlo simulations using charge‐transfer rates based on the tunneling enabled hopping model, charge‐transport properties of TIPS‐P under various lattice strains are investigated. Shear‐strained TIPS‐P indeed exhibits one‐dimensional charge transport, which agrees with the experiments. Furthermore, either shear or tensile strain lead to mobility enhancement, but with strong charge‐transport anisotropy. In addition, a combination of shear and tensile strains could not only enhance mobility, but also decrease anisotropy. By combining the shear and tensile strains, almost isotropic charge transport could be realized in TIPS‐P crystal with the hole mobility improved by at least one order of magnitude. This approach enables a deep understanding of the effect of lattice strain on charge carrier transport properties in organic semiconductors.  相似文献   

15.
Thermoelectric materials based on quaternary compounds Ag1?xPbmSbTe2+m exhibit high dimensionless figure‐of‐merit values, ranging from 1.5 to 1.7 at 700 K. The primary factor contributing to the high figure of merit is a low lattice thermal conductivity, achieved through nanostructuring during melt solidification. As a consequence of nucleation and growth of a second phase, coherent nanoscale inclusions form throughout the material, which are believed to result in scattering of acoustic phonons while causing only minimal scattering of charge carriers. Here, characterization of the nanosized inclusions in Ag0.53Pb18Sb1.2Te20 that shows a strong tendency for crystallographic orientation along the {001} planes, with a high degree of lattice strain at the interface, consistent with a coherent interfacial boundary is reported. The inclusions are enriched in Ag relative to the matrix, and seem to adopt a cubic, 96 atom per unit cell Ag2Te phase based on the Ti2Ni type structure. In‐situ high‐temperature synchrotron radiation diffraction studies indicated that the inclusions remain thermally stable to at least 800 K.  相似文献   

16.
The electrodynamic properties of La‐doped SrTiO3 thin films with controlled elemental vacancies are investigated using optical spectroscopy and thermopower measurement. In particular, a correlation between the polaron formation and thermoelectric properties of the transition metal oxide (TMO) thin films is observed. With decreasing oxygen partial pressure during the film growth (P(O2)), a systematic lattice expansion is observed along with the increased elemental vacancy and carrier density, experimentally determined using optical spectroscopy. Moreover, an absorption in the mid‐infrared photon energy range is found, which is attributed to the polaron formation in the doped SrTiO3 system. Thermopower of the La‐doped SrTiO3 thin films can be largely modulated from –120 to –260 μV K?1, reflecting an enhanced polaronic mass of ≈3 < m polron/m < ≈4. The elemental vacancies generated in the TMO films grown at various P(O2) influences the global polaronic transport, which governs the charge transport behavior, including the thermoelectric properties.  相似文献   

17.
Perovskite‐structured (ABO3) transition metal oxides are promising bifunctional electrocatalysts for efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). In this paper, a set of epitaxial rare‐earth nickelates (RNiO3) thin films is investigated with controlled A‐site isovalent substitution to correlate their structure and physical properties with ORR/OER activities, examined by using a three‐electrode system in O2‐saturated 0.1 m KOH electrolyte. The ORR activity decreases monotonically with decreasing the A‐site element ionic radius which lowers the conductivity of RNiO3 (R = La, La0.5Nd0.5, La0.2Nd0.8, Nd, Nd0.5Sm0.5, Sm, and Gd) films, with LaNiO3 being the most conductive and active. On the other hand, the OER activity initially increases upon substituting La with Nd and is maximal at La0.2Nd0.8NiO3. Moreover, the OER activity remains comparable within error through Sm‐doped NdNiO3. Beyond that, the activity cannot be measured due to the potential voltage drop across the film. The improved OER activity is ascribed to the partial reduction of Ni3+ to Ni2+ as a result of oxygen vacancies, which increases the average occupancy of the eg antibonding orbital to more than one. The work highlights the importance of tuning A‐site elements as an effective strategy for balancing ORR and OER activities of bifunctional electrocatalysts.  相似文献   

18.
Layered transition metal oxides have drawn much attention as a promising candidate cathode material for sodium‐ion batteries. However, their performance degradation originating from strains and lattice phase transitions remains a critical challenge. Herein, a high‐concentration Zn‐substituted NaxMnO2 cathode with strongly suppressed P2–O2 transition is investigated, which exhibits a volume change as low as 1.0% in the charge/discharge process. Such ultralow strain characteristics ensure a stable host for sodium ion storage, which significantly improves the cycling stability and rate capability of the cathode material. Also, the strong coupling between the highly reversible capacity and the doping content of Zn in NaxMnO2 is investigated. It is suggested that a reversible anionic redox reaction can be effectively triggered by Zn ions and is also highly dependent on the Zn content. Such an ion doping strategy could shed light on the design and construction of stable and high‐capacity sodium ion host.  相似文献   

19.
Correlated quantum‐chemical calculations are applied to analyze the amplitude of the electronic‐transfer integrals that describe charge transport in interacting carbon nanotubes (CNTs) by investigating the influences of: i) the relative positions of the CNTs, ii) the size of the CNTs, and iii) their chemical impurities. Our results indicate that the mobility of the charge carrier is extremely sensitive to the molecular packing and the presence of chemical impurities. The largest splitting for the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels is in the case of perfectly cofacial conformations where hexagons face hexagons in the dimer structure. We found that the diameter of the CNT determines the type of transporting carrier: for CNTs with large diameters hole transport dominates, while for thin CNTs electron transport dominates. In general, the carrier mobility for the perfect CNTs (n ≥ 3) is less pronounced than that of C60 due to their relatively small strain. B‐ and N‐doped CNTs exhibit considerably larger mobilities owing to the possibility of metallic behavior. These results provide a plausible explanation for the high mobility found experimentally in a field‐effect transistor (FET) made from a large‐area, well‐aligned CNT array. In addition, these hole‐rich and electron‐rich dopants imply potential applications in nanoelectronics.  相似文献   

20.
Surface modification of indium tin oxide (ITO)‐coated substrates through the use of self‐assembled monolayers (SAMs) of molecules with permanent dipole moments has been used to control the anode work function and device performance in molecular solar cells based on a CuPc:C60 (CuPc: copper phthalocyanine) heterojunction. Use of SAMs increases both the short‐circuit current density (Jsc) and fill factor, increasing the power‐conversion efficiency by up to an order of magnitude. This improvement is attributed primarily to an enhanced interfacial charge transfer rate at the anode, due to both a decrease in the interfacial energy step between the anode work function and the highest occupied molecular orbital (HOMO) level of the organic layer, and a better compatibility of the SAM‐modified electrodes with the initial CuPc layers, which leads to a higher density of active sites for charge transfer. An additional factor may be the influence of increasing electric field at the heterojunction on the exciton‐dissociation efficiency. This is supported by calculations of the electric potential distribution for the structures. Work‐function modification has virtually no effect on the open‐circuit voltage (Voc), in accordance with the idea that Voc is controlled primarily by the energy levels of the donor and acceptor materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号