首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 945 毫秒
1.
Two blue‐emitting cationic iridium complexes with 2‐(1H‐pyrazol‐1‐yl)pyridine (pzpy) as the ancillary ligands, namely, [Ir(ppy)2(pzpy)]PF6 and [Ir(dfppy)2(pzpy)]PF6 (ppy is 2‐phenylpyridine, dfppy is 2‐(2,4‐difluorophenyl) pyridine, and PF6? is hexafluorophosphate), have been prepared, and their photophysical and electrochemical properties have been investigated. In CH3CN solutions, [Ir(ppy)2(pzpy)]PF6 emits blue‐green light (475 nm), which is blue‐shifted by more than 100 nm with respect to the typical cationic iridium complex [Ir(ppy)2(dtb‐bpy)]PF6 (dtb‐bpy is 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine); [Ir(dfppy)2(pzpy)]PF6 with fluorine‐substituted cyclometalated ligands shows further blue‐shifted light emission (451 nm). Quantum chemical calculations reveal that the emissions are mainly from the ligand‐centered 3ππ* states of the cyclometalated ligands (ppy or dfppy). Light‐emitting electrochemical cells (LECs) based on [Ir(ppy)2(pzpy)]PF6 gave green‐blue electroluminescence (486 nm) and had a relatively high efficiency of 4.3 cd A?1 when an ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate was added into the light‐emitting layer. LECs based on [Ir(dfppy)2(pzpy)]PF6 gave blue electroluminescence (460 nm) with CIE (Commission Internationale de L'Eclairage) coordinates of (0.20, 0.28), which is the bluest light emission for iTMCs‐based LECs reported so far. Our work suggests that using diimine ancillary ligands involving electron‐donating nitrogen atoms (like pzpy) is an efficient strategy to turn the light emission of cationic iridium complexes to the blue region.  相似文献   

2.
Bis‐tridentate Ir(III) metal complexes are expected to show great potential in organic light‐emitting diode (OLED) applications due to the anticipated, superb chemical and photochemical stability. Unfortunately, their exploitation has long been hampered by lack of adequate methodology and with inferior synthetic yields. This hurdle can be overcome by design of the first homoleptic, bis‐tridentate Ir(III) complex [Ir(pzpyph)(pzHpyph)] ( 1 ), for which the abbreviation (pzpyph)H (or pzHpyph) stands for the parent 2‐pyrazolyl‐6‐phenyl pyridine chelate. After that, methylation and double methylation of 1 afford the charge‐neutral Ir(III) complex [Ir(pzpyph)(pzMepyph)] ( 2 ) and cationic complex [Ir(pzMepyph)2][PF6] ( 3 ), while deprotonation of 1 gives formation of anionic [Ir(pzpyph)2][NBu4] ( 4 ), all in high yields. These bis‐tridentate Ir(III) complexes 2 – 4 are highly emitted in solution and solid states, while the charge‐neutral 2 and corresponding t ‐butyl substituted derivative [Ir(pzpyBuph)(pzMepyBuph)] ( 5 ) exhibit superior photostability versus the tris‐bidentate references [Ir(ppy)2(acac)] and [Ir(ppy)3] in toluene under argon, making them ideal OLED emitters. For the track record, phosphor 5 gives very small efficiency roll‐off and excellent overall efficiencies of 20.7%, 66.8 cd A?1, and 52.8 lm W?1 at high brightness of 1000 cd m?2. These results are expected to inspire further studies on the bis‐tridentate Ir(III) complexes, which are judged to be more stable than their tris‐bidentate counterparts from the entropic point of view.  相似文献   

3.
The archetype ionic transition‐metal complexes (iTMCs) [Ir(ppy)2(bpy)][PF6] and [Ir(ppy)2(phen)][PF6], where Hppy = 2‐phenylpyridine, bpy = 2,2′‐bipyridine, and phen = 1,10‐phenanthroline, are used as the primary active components in light‐emitting electrochemical cells (LECs). Solution and solid‐state photophysical properties are reported for both complexes and are interpreted with the help of density functional theory calculations. LEC devices based on these archetype complexes exhibit long turn‐on times (70 and 160 h, respectively) and low external quantum efficiencies (~2%) when the complex is used as a pure film. The long turn‐on times are attributed to the low mobility of the counterions. The performance of the devices dramatically improves when small amounts of ionic liquids (ILs) are added to the Ir‐iTMC: the turn‐on time improves drastically (from hours to minutes) and the device current and power efficiency increase by almost one order of magnitude. However, the improvement of the turn‐on time is unfortunately accompanied by a decrease in the stability of the device from 700 h to a few hours. After a careful study of the Ir‐iTMC:IL molar ratios, an optimum between turn‐on time and stability is found at a ratio of 4:1. The performance of the optimized devices using these rather simple complexes is among the best reported to date. This holds great promise for devices that use specially‐designed iTMCs and demonstrates the prospect for LECs as low‐cost light sources.  相似文献   

4.
Enhancing the efficiency and lifetime of light emitting electrochemical cells (LEC) is the most important challenge on the way to energy efficient lighting devices of the future. To avail this, emissive Ir(III) complexes with fluoro‐substituted cyclometallated ligands and electron donating groups (methyl and tert ‐butyl)‐substituted diimine ancillary (N^N) ligands and their associated LEC devices are studied. Four different complexes of general composition [Ir(4ppy)2(N^N)][PF6] (4Fppy = 2‐(4‐fluorophenyl)pyridine) with the N^N ligand being either 2,2′‐bipyridine ( 1 ), 4.4′‐dimethyl‐2,2′‐bipyridine ( 2 ), 5.5′‐dimethyl‐2,2′‐bipyridine ( 3 ), or 4.4′‐di‐tert ‐butyl‐2,2′‐bipyridine ( 4 ) are synthesized and characterized. All complexes emit in the green region of light with emission maxima of 529–547 nm and photoluminescence quantum yields in the range of 50.6%–59.9%. LECs for electroluminescence studies are fabricated based on these complexes. The LEC based on ( 1 ) driven under pulsed current mode demonstrated the best performance, reaching a maximum luminance of 1605 cd m?2 resulting in 16 cd A?1 and 8.6 lm W?1 for current and power efficiency, respectively, and device lifetime of 668 h. Compared to this, LECs based on ( 3 ) and ( 4 ) perform lower, with luminance and lifetime of 1314 cd m?2, 45.7 h and 1193 cd m?2, 54.9 h, respectively. Interestingly, in contrast to common belief, the fluorine content of the Ir‐iTMCs does not adversely affect the LEC performance, but rather electron donating substituents on the N^N ligands are found to dramatically reduce both performance and stability of the green LECs. In light of this, design concepts for green light emitting electrochemical devices have to be reconsidered.  相似文献   

5.
A new and synthetically versatile strategy has been developed for the phosphorescence color tuning of cyclometalated iridium phosphors by simple tailoring of the phenyl ring of ppy (Hppy = 2‐phenylpyridine) with various main‐group moieties in [Ir(ppy‐X)2(acac)] (X = B(Mes)2, SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph). This can be achieved by shifting the charge‐transfer character from the pyridyl groups in some traditional iridium ppy‐type complexes to the electron‐withdrawing main‐group moieties and these assignments were supported by theoretical calculations. This new color tuning strategy in IrIII‐based triplet emitters using electron‐withdrawing main‐group moieties provides access to IrIII phosphors with improved electron injection/electron transporting features essential for highly efficient, color‐switchable organic light‐emitting diodes (OLEDs). The present work furnished OLED colors spanning from bluish‐green to red (505–609 nm) with high electroluminescence efficiencies which have great potential for application in multicolor displays. The maximum external quantum efficiency of 9.4%, luminance efficiency of 10.3 cd A−1 and power efficiency of 5.0 lm W−1 for the red OLED (X = B(Mes)2), 11.1%, 35.0 cd A−1, and 26.8 lm W−1 for the bluish‐green device (X = OPh), 10.3%, 36.9 cd A−1, and 28.6 lm W−1 for the bright green device (X = NPh2) as well as 10.7%, 35.1 cd A−1, and 23.1 lm W−1 for the yellow‐emitting device (X = SO2Ph) can be obtained.  相似文献   

6.
Recently, the stabilities of light-emitting electrochemical cells (LECs) based on cationic iridium(III) complexes with controlled intramolecular π–π stacking interactions by adopting pendant phenyl rings have been dramatically enhanced compared with those of the complexes without π–π stacking interactions within the molecule. Herein, a novel cationic iridium complex [Ir(ppy)2(pyphmi)]PF6[ppy = 2-phenylpyridine, pyphmi = 1-pyridyl-3-phenylimidazolin-2-ylidene-C,C2′] which exhibits intramolecular π-stacking interaction has been prepared and its X-ray crystal structure has been investigated. Unexpectedly, however, the corresponding LECs based on [Ir(ppy)2(pyphmi)]PF6 do not show significantly enhanced stabilities compared to the LECs based on [Ir(ppy)2(pymi)]PF6 [pymi = 1-pyridyl-3-methylimidazolin-2-ylidene-C,C2′] without pendant phenyl rings within the molecule. This phenomenon is attributed to the very long centroid–centroid distance between the π-stacked phenyl rings, which results from the larger tension of substituted five-membered ring moiety (imidazolin-2-ylidene). In addition, irreversible oxidation and reduction processes would also decrease the electrochemical stability of [Ir(ppy)2(pyphmi)]PF6. Thus, intramolecular π–π stacking interaction using pendant phenyl rings is not always effective to improve the stability of LECs.  相似文献   

7.
The host materials designed for highly efficient white phosphorescent organic light‐emitting diodes (PhOLEDs) with power efficiency (PE) >50 lm W‐1 and low efficiency roll‐off are very rare. In this work, three new indolocarbazole‐based materials (ICDP, 4ICPPy, and 4ICDPy) are presented composed of 6,7‐dimethylindolo[3,2‐a]carbazole and phenyl or 4‐pyridyl group for hosting blue, green, and red phosphors. Among this three host materials, 4ICDPy‐based devices reveal the best electroluminescent performance with maximum external quantum efficiencies (EQEs) of 22.1%, 27.0%, and 25.3% for blue (FIrpic), green (fac‐Ir(ppy)3), and red ((piq)2Ir(acac)) PhOLEDs. A two‐color and single‐emitting‐layer white organic light‐emitting diode hosted by 4ICDPy with FIrpic and Ir(pq)3 as dopants achieves high EQE of 20.3% and PE of 50.9 lm W?1 with good color stability; this performance is among the best for a single‐emitting‐layer white PhOLEDs. All 4ICDPy‐based devices show low efficiency roll‐off probably due to the excellent balanced carrier transport arisen from the bipolar character of 4ICDPy.  相似文献   

8.
Phosphorescent emissive materials in organic light‐emitting diodes (OLEDs) manufactured using evaporation are usually blended with host materials at a concentration of 3–15 wt% to avoid concentration quenching of the luminescence. Here, experimental measurements of hole mobility and photoluminescence are related to the atomic level morphology of films created using atomistic nonequilibrium molecular dynamics simulations mimicking the evaporation process with similar guest concentrations as those used in operational test devices. For blends of fac‐tris[2‐phenylpyridinato‐C2,N]iridium(III) [Ir(ppy)3] in tris(4‐carbazoyl‐9‐ylphenyl)amine (TCTA), it is found that clustering of the Ir(ppy)3 (surface of the molecules within ≈0.4 nm) in the simulated films is directly relatable to the experimentally‐measured hole mobility. Films containing 1–10 wt% of Ir(ppy)3 in TCTA have a mobility of up to two orders of magnitude lower (≈10?6 cm2 V?1 s?1) than the neat TCTA film, which is consistent with the Ir(ppy)3 molecules acting as hole traps due to their smaller ionization potential. Comparison of the simulated film morphologies with the measured photoluminescence properties shows that for luminescence quenching to occur, the Ir(ppy)3 molecules have to have their ligands partially overlapping. Thus, the results show that the effect of guest interactions on charge transport and luminescence are markedly different for OLED light‐emitting layers.  相似文献   

9.
The authors present high-color-rendering-index (CRI) white polymer light-emitting electrochemical cells (PLECs) based on ionic host-guest systems. PLECs were fabricated with blend films composed of a blue fluorescent cationic π-conjugated polymer, poly(9,9-bis[6′-(N,N,N,-trimethylammonium)hexyl]fluorine-co-alt-1,4-phenylene)bromide (PFN+Br), used as a host, and a red phosphorescent cationic iridium complex, [Ir(ppy)2(biq)]+(PF6) (where (ppy) = 2-phenylpyridinate and biq = 2,2′-biquinoline), used as a guest. By optimizing the composition of PFN+Br and [Ir(ppy)2(biq)]+(PF6) in the active layers, white light emission with Commission Internationale de l'Eclairage (CIE) coordinates of (x = 0.28, y = 0.31) and a very high CRI of 95.8 was achieved through mixing of blue and red light at an applied voltage of 4.0 V. The white light emissions were obtained at a low [Ir(ppy)2(biq)]+(PF6) concentration (PFN+Br:[Ir(ppy)2(biq)]+(PF6) = 1:0.01 (mass ratio)), showing that [Ir(ppy)2(biq)]+(PF6) acts as a suitable energy acceptor. The emission mechanism of the ionic host-guest PLECs can be explained by Förster resonance energy transfer (FRET) and Dexter energy transfer (DET) from the excited PFN+Br to [Ir(ppy)2(biq)]+(PF6). Utilization of ionic host-guest PLECs is a very promising method for realizing white light-emitting devices with very high CRI.  相似文献   

10.
The combination of high efficiencies and long lifetime in a single light‐emitting electrochemical cell (LEC) device remain a major problem in LEC technology, preventing its application in commercial lighting devices. Three green light‐emitting cationic iridium‐based complexes of the general composition [Ir(C^N)2(N^N)][PF6] with 4‐Fppy (2‐(4‐fluorophenyl)pyridinato) as the cyclometalating C^N ligand and 1,10‐phenanthroline ( 1 ), 4,7‐diphenyl‐1,10‐phenanthroline (bathophenanthroline, bphen, 2 ), and 2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (bathocuprione, dmbphen, 3 ) as ancillary N^N ligands are synthesized and characterized. Computational studies are carried out in order to compare the electronic structure of the three ionic transition metal complexes (iTMCs) and provide insights into their potential as LEC emitter materials. LECs are then fabricated with complexes 1 – 3 . Driven under a pulsed current, they display a high luminance and current and power efficiencies. As the LEC based on complex 2 displays the overall best device performance, including the longest lifetime of 474 h, it is selected for subsequent driving conditions optimization. An extraordinary power efficiency of 25 lm W?1 and current efficiency of 30 cd A?1 are achieved under optimized operation conditions with reduced current density, resulting in a long device lifetime of 720 h. Altogether, ligand design in iTMCs and optimization of the device driving conditions leads to a significant improvement in LEC performance.  相似文献   

11.
12.
A novel blue-green light-emitting cationic iridium complex [Ir(ppz)2pzpy]PF6 (complex 1), where ppz is phenylpyrazole and pzpy is 2-(1-phenyl-1H-pyrazol-3-yl)pyridine, is developed. Its crystal, photophysical and electrochemical properties are characterized through experiments and quantum chemical calculations. The novel complex exhibits enlarged energy gap and blue-shifted emission spectrum at 77 K compared to a reference complex, [Ir(ppy)2pzpy]PF6 (complex 2), with phenylpyridine (ppy) as the cyclometalated ligands. Moreover, light-emitting electrochemical cells (LECs) fabricated with complex 1 show both improved color purity with CIE (Commission Internationale de L’Eclairage) coordinates of (0.25, 0.39) and elongated lifespan (t1/2 = 218 min, Etot = 0.55 mJ) compared to LECs based on complex 2.  相似文献   

13.
Two new phosphorescent iridium(III ) cyclometalated complexes, [Ir(DPA‐Flpy)3] ( 1 ) and [Ir(DPA‐Flpy)2(acac)] ( 2 ) ((DPA‐Flpy)H = (9,9‐diethyl‐7‐pyridinylfluoren‐2‐yl)diphenylamine, Hacac = acetylacetone), have been synthesized and characterized. The incorporation of electron‐donating diphenylamino groups to the fluorene skeleton is found to increase the highest occupied molecular orbital (HOMO) levels and add hole‐transporting ability to the phosphorescent center. Both complexes are highly amorphous and morphologically stable solids and undergo glass transitions at 160 and 153 °C, respectively. These iridium phosphors emit bright yellow to orange light at room temperature with relatively short lifetimes (< 1 μs) in both solution and the solid state. Organic light‐emitting diodes (OLEDs) fabricated using 1 and 2 as phosphorescent dopant emitters constructed with a multilayer configuration show very high efficiencies. The homoleptic iridium complex 1 is shown to be a more efficient electrophosphor than the heteroleptic congener 2 . Efficient electrophosphorescence with a maximum external quantum efficiency close to 10 % ph/el (photons per electron), corresponding to a luminance efficiency of ~ 30 cd A–1 and a power efficiency of ~ 21 lm W–1, is obtained by using 5 wt.‐% 1 as the guest dopant.  相似文献   

14.
The synthesis and characterization of two new phosphorescent cationic iridium(III) cyclometalated diimine complexes with formula [Ir( L )2(N‐N)]+(PF6) ( HL = (9,9‐diethyl‐7‐pyridinylfluoren‐2‐yl)diphenylamine); N‐N = 4,4′‐dimethyl‐2,2′‐bipyridine ( 1 ), 4,7‐dimethyl‐1,10‐phenanthroline ( 2 )) are reported. Both complexes are coordinated by cyclometalated ligands consisting of hole‐transporting diphenylamino (DPA)‐ and fluorene‐based 2‐phenylpyridine moieties. Structural information on these heteroleptic complexes has been obtained by using an X‐ray diffraction study of complex 2 . Complexes 1 and 2 are morphologically and thermally stable ionic solids and are good yellow phosphors at room temperature with relatively short lifetimes in both solution and solid phases. These robust iridium complexes can be thermally vacuum‐sublimed and used as phosphorescent dyes for the fabrication of high‐efficiency organic light‐emitting diodes (OLEDs). These devices doped with 5 wt % 1 can produce efficient electrophosphorescence with a maximum brightness of up to 15 610 cd m–2 and a peak external quantum efficiency of ca. 7 % photons per electron that corresponds to a luminance efficiency of ca. 20 cd A–1 and a power efficiency of ca. 19 lm W–1. These results show that charged iridium(III) materials are useful alternative electrophosphors for use in evaporated devices in order to realize highly efficient doped OLEDs.  相似文献   

15.
The complexes [Cu(dnbp)(DPEphos)]+(X) (dnbp and DPEphos are 2,9‐di‐n‐butyl‐1,10‐phenanthroline and bis[2‐(diphenylphosphino)phenyl]ether, respectively, and X is BF4, ClO4, or PF6) can form high‐quality films with photoluminescence quantum yields of up to 71 ± 7 %. Their electroluminescent properties are studied using the device structure indium tin oxide (ITO)/complex/metal cathode. The devices emit green light efficiently, with an emission maximum of 523 nm, and work in the mode of light‐emitting electrochemical cells. The response time of the devices greatly depends on the driving voltage, the counterions, and the thickness of the complex film. After pre‐biasing at 25 V for 40 s, the devices turn on instantly, with a turn‐on voltage of ca. 2.9 V. A current efficiency of 56 cd A–1 and an external quantum efficiency of 16 % are realized with Al as the cathode. Using a low‐work‐function metal as the cathode can significantly enhance the brightness of the device almost without affecting the turn‐on voltage and current efficiency. With a Ca cathode, a brightness of 150 cd m–2 at 6 V and 4100 cd m–2 at 25 V is demonstrated. The electroluminescent performance of these types of complexes is among the best so far for transition metal complexes with counterions.  相似文献   

16.
A novel red phosphorescent iridium complex containing a carbazole‐functionalized β‐diketonate, Ir(DBQ)2(CBDK) (bis(dibenzo[f,h]quinoxalinato‐N,C2) iridium (1‐(carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐diketonate)) is designed, synthesized, and characterized. The electrophosphorescence properties of a nondoped device using the title complex as an emitter with a device configuration of indium tin oxide (ITO)/N,N′‐diphenyl‐N,N′‐bis(1‐naphthyl)‐1,1′‐diphenyl‐4,4′‐diamine (NPB; 20 nm)/iridium complex (20 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 5 nm)/tris(8‐hydroxyquinoline) (AlQ; 30 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) are examined. The results show that the nondoped device achieves a maximum lumen efficiency as high as 3.49 lm W–1. To understand this excellent result observed, two reference complexes Ir(DBQ)2(acac), where acac is the acetyl acetonate anion, and Ir(DBQ)2(FBDK), [bis(dibenzo[f,h]quinoxalinato‐N,C2) iridium (1‐(9‐methyl‐fluoren‐9‐yl)‐6,6‐dimethylheptane‐3,5‐diketonate)], have also been synthesized, and as emitters they were examined under the same device configuration. The maximum lumen efficiency of the former compound is found to be 0.26 lm W–1 while that for the latter is 0.37 lm W–1, suggesting that the excellent performance of Ir(DBQ)2(CBDK) can be attributed mainly to an improved hole‐transporting property that benefits the exciton transport. In addition, a bulky diketonate group separates the emitter centers from each other, which is also important for organic light‐emitting diodes.  相似文献   

17.
Increasing exciton utilization and reducing exciton annihilation are crucial to achieve high performance of organic light‐emitting diodes (OLEDs), which greatly depend on molecular engineering of emitters and hosts. A novel luminogen (SBF‐BP‐DMAC) is synthesized and characterized. Its crystal and electronic structures, thermal stability, electrochemical behavior, carrier transport, photoluminescence, and electroluminescence are investigated. SBF‐BP‐DMAC exhibits enhanced photoluminescence and promotes delayed fluorescence in solid state and bipolar carrier transport ability, and thus holds multifunctionality of emitter and host for OLEDs. Using SBF‐BP‐DMAC as an emitter, the nondoped OLEDs exhibit maximum electroluminescence (EL) efficiencies of 67.2 cd A?1, 65.9 lm W?1, and 20.1%, and the doped OLEDs provide maximum EL efficiencies of 79.1 cd A?1, 70.7 lm W?1, and 24.5%. A representative orange phosphor, Ir(tptpy)2acac, is doped into SBF‐BP‐DMAC for OLED fabrication, giving rise to superior EL efficiencies of 88.0 cd A?1, 108.0 lm W?1, and 26.8% for orange phosphorescent OLEDs, and forward‐viewing EL efficiencies of 69.3 cd A?1, 45.8 lm W?1, and 21.0% for two‐color hybrid warm‐white OLEDs. All of these OLEDs can retain high EL efficiencies at high luminance, with very small efficiency roll‐offs. The outstanding EL performance demonstrates the great potentials of SBF‐BP‐DMAC in practical display and lighting devices.  相似文献   

18.
《Organic Electronics》2014,15(3):667-674
The ionic iridium complexes, [Ir(ppy)2(EP-Imid)]PF6 (Complex 1) and [Ir(dfppy)2(EP-Imid)]PF6 (Complex 2) are used as the light-emitting material for the fabrication of light-emitting electrochemical cells (LECs). These complexes have been synthesized, employing 2-(4-ethyl-2-pyridyl)-1H-imidazole (EP-Imid) as the ancillary ligand, 2-phenylpyridine (ppy) and 2-(2,4-difluorophenyl)pyridine (dfppy) as the cyclometalated ligands, which were characterized by various spectroscopic, photophysical and electrochemical methods. The photoluminescence (PL) emission spectra in acetonitrile solution show blue–green and blue light emission for Complexes 1 and 2 respectively. However, LECs incorporating these complexes resulted in green (522 nm) light emission for Complex 1 with the Commission Internationale de L’Eclairage (CIE) coordinates of (0.33, 0.56) and blue–green (500 nm) light emission for Complex 2 with the CIE coordinates of (0.24, 0.44). Using Complex 1, a maximum luminance of 1191 cd m−2 and current efficiency of 1.0 cd A−1 are obtained while that of Complex 2 are 741 cd m−2 and 0.88 cd A−1 respectively.  相似文献   

19.
《Organic Electronics》2004,5(5):265-270
We demonstrate high efficiency electrophosphorescence in organic light-emitting devices employing a phosphorescent dye doped into a low-molecule material. Methoxy-substituted 1,3,5-tris[4-(diphenylamino)phenyl]benzene (TDAPB) was selected as the host material for the phosphorescent dopant fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3], and organic films were fabricated by spin-coating. A peak external quantum efficiency of 8.2% (29 cd/A), luminous power efficiency of 17.3 lm/W, and luminance of 33,000 cd/m2 were achieved at 9.4 V with a 90 nm-thick emitting layer. Emission from the host TDAPB material was not observed in the electroluminescence (EL) and photoluminescence (PL) spectra. The decrease in efficiencies at a high current is analyzed using the triplet–triplet annihilation model. The high performance for the simple device structure in this study is attributed to excellent film forming properties of the material and efficient energy transfer from the host to dopants.  相似文献   

20.
A new triphenylamine/oxadiazole hybrid, namely m‐TPA‐o‐OXD, formed by connecting the meta‐position of a phenyl ring in triphenylamine with the ortho‐position of 2,5‐biphenyl‐1,3,4‐oxadiazole, is designed and synthesized. The new bipolar compound is applicable in the phosphorescent organic light‐emitting diodes (PHOLEDs) as both host and exciton‐blocking material. By using the new material and the optimization of the device structures, very high efficiency green and yellow electrophosphorescence are achieved. For example, by introducing 1,3,5‐tris(N‐phenylbenzimidazol‐2‐yl)benzene (TPBI) to replace 2, 9‐dimethyl‐4,7‐diphenyl‐1, 10‐phenanthroline (BCP)/tris(8‐hydroxyquinoline)aluminium (Alq3) as hole blocking/electron transporting layer, followed by tuning the thicknesses of hole‐transport 1, 4‐bis[(1‐naphthylphenyl)amino]biphenyl (NPB) layer to manipulate the charge balance, a maximum external quantum efficiency (ηEQE,max) of 23.0% and a maximum power efficiency (ηp,max) of 94.3 lm W−1 are attained for (ppy)2Ir(acac) based green electrophosphorescence. Subsequently, by inserting a thin layer of m‐TPA‐o‐OXD as self triplet exciton block layer between hole‐transport and emissive layer to confine triplet excitons, a ηEQE,max of 23.7% and ηp,max of 105 lm W−1 are achieved. This is the highest efficiency ever reported for (ppy)2Ir(acac) based green PHOLEDs. Furthermore, the new host m‐TPA‐o‐OXD is also applicable for other phosphorescent emitters, such as green‐emissive Ir(ppy)3 and yellow‐emissive (fbi)2Ir(acac). A yellow electrophosphorescent device with ηEQE,max of 20.6%, ηc,max of 62.1 cd A−1, and ηp,max of 61.7 lm W−1, is fabricated. To the author’s knowledge, this is also the highest efficiency ever reported for yellow PHOLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号