首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design of a medium‐speed drivetrain for the Technical University of Denmark (DTU) 10‐MW reference offshore wind turbine is presented. A four‐point support drivetrain layout that is equipped with a gearbox with two planetary stages and one parallel stage is proposed. Then, the drivetrain components are designed based on design loads and criteria that are recommended in relevant international standards. Finally, an optimized drivetrain model is obtained via an iterative design process that minimizes the weight and volume. A high‐fidelity numerical model is established via the multibody system approach. Then, the developed drivetrain model is compared with the simplified model that was proposed by DTU, and the two models agree well. In addition, a drivetrain resonance evaluation is conducted based on the Campbell diagrams and the modal energy distribution. Detailed parameters for the drivetrain design and dynamic modelling are provided to support the reproduction of the drivetrain model. A decoupled approach, which consists of global aero‐hydro‐servo‐elastic analysis and local drivetrain analysis, is used to determine the drivetrain dynamic response. The 20‐year fatigue damages of gears and bearings are calculated based on the stress or load duration distributions, the Palmgren‐Miner linear accumulative damage hypothesis, and long‐term environmental condition distributions. Then, an inspection priority map is established based on the failure ranking of the drivetrain components, which supports drivetrain inspection and maintenance assessment and further model optimization. The detailed modelling of the baseline drivetrain model provides a basis for benchmark studies and support for future research on multimegawatt offshore wind turbines.  相似文献   

2.
Improving the reliability of wind turbines (WT) is an essential component in the bid to minimize the cost of energy, especially for offshore wind because of the difficulties associated with access for maintenance. Numerous studies have shown that WT gearbox and generator failure rates are unacceptably high, particularly given the long downtime incurred per failure. There is evidence that bearing failures of the gearbox high‐speed stage (HSS) and generator account for a significant proportion of these failures. However, the root causes of these failure data are not known, and there is therefore a need for fundamental computational studies to support the valuable ‘top down’ reliability analyses. In this paper, a real (proprietary) 2 MW geared WT was modelled to compute the gearbox–generator misalignment and predict the impact of this misalignment upon the gearbox HSS and generator bearings. At rated torque, misalignment between the gearbox and generator of 8500 µm was seen. For the 2 MW WT analysed, the computational data show that the L10 fatigue lives of the gearbox HSS bearings were not significantly affected by this misalignment but that the L10 fatigue lives of the generator bearings, particularly the drive‐end bearing, could be significantly reduced. It is proposed to apply a nominal offset to the generator to reduce the misalignment under operation, thereby reducing the loading on the gearbox HSS and generator bearings. The value of performing integrated system analyses has been demonstrated, and a robust methodology has been outlined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Y. Guo  T. Parsons  K. Dykes  R.N. King 《风能》2017,20(3):537-550
This study compares the impact of drivetrain configuration on the mass and capital cost of a series of wind turbines ranging from 1.5 MW to 5.0 MW power ratings for both land‐based and offshore applications. The analysis is performed with a new physics‐based drivetrain analysis and sizing tool, Drive Systems Engineering (DriveSE), which is part of the Wind‐Plant Integrated System Design & Engineering Model. DriveSE uses physics‐based relationships to size all major drivetrain components according to given rotor loads simulated based on International Electrotechnical Commission design load cases. The model's sensitivity to input loads that contain a high degree of variability was analyzed. Aeroelastic simulations are used to calculate the rotor forces and moments imposed on the drivetrain for each turbine design. DriveSE is then used to size all of the major drivetrain components for each turbine for both three‐point and four‐point configurations. The simulation results quantify the trade‐offs in mass and component costs for the different configurations. On average, a 16.7% decrease in total nacelle mass can be achieved when using a three‐point drivetrain configuration, resulting in a 3.5% reduction in turbine capital cost. This analysis is driven by extreme loads and does not consider fatigue. Thus, the effects of configuration choices on reliability and serviceability are not captured. However, a first order estimate of the sizing, dimensioning and costing of major drivetrain components are made which can be used in larger system studies which consider trade‐offs between subsystems such as the rotor, drivetrain and tower. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Operation and maintenance costs are significant for large‐scale wind turbines and particularly so for offshore. A well‐organized operation and maintenance strategy is vital to ensure the reliability, availability, and cost‐effectiveness of a system. The ability to detect, isolate, estimate, and perform prognoses on component degradation could become essential to reduce unplanned maintenance and downtime. Failures in gearbox components are in focus since they account for a large share of wind turbine downtime. This study considers detection and estimation of wear in the downwind main‐shaft bearing of a 5‐MW spar‐type floating turbine. Using a high‐fidelity gearbox model, we show how the downwind main bearing and nacelle axial accelerations can be used to evaluate the condition of the bearing. The paper shows how relative acceleration can be evaluated using statistical change‐detection methods to perform a reliable estimation of wear of the bearing. It is shown in the paper that the amplitude distribution of the residual accelerations follows a t‐distribution and a change‐detection test is designed for the specific changes we observe when the main bearing becomes worn. The generalized likelihood ratio test is extended to fit the particular distribution encountered in this problem, and closed‐form expressions are derived for shape and scale parameter estimation, which are indicators for wear and extent of wear in the bearing. The results in this paper show how the proposed approach can detect and estimate wear in the bearing according to desired probabilities of detection and false alarm.  相似文献   

6.
针对变速变桨风力发电机组(variable speed variable pitch,VSVP)如何在低风速时最大限度捕获风能以及在额定风速以上降低传动链载荷进行研究。低风速时在研究了传统风能追踪控制策略的基础上,文中提出通过改变最优增益系数来追踪最佳风能利用系数的自适应转矩控制策略。同时针对风力发电机组传动链的扭转振动,提出了基于发电机转速反馈滤波的转矩纹波控制方式。以2MW变速变桨风力发电机组为验证对象,基于Blade软件平台对所采用的控制策略进行仿真研究。结果表明:所提出的自适应转矩控制策略能够更好的追踪最大功率点,同时采用转矩纹波能够降低传动链载荷  相似文献   

7.
Karl O. Merz 《风能》2015,18(6):955-977
A fast and effective frequency‐domain optimization method was developed for stall‐regulated blades. It was found that when using linearized dynamics, typical cost functions employing damage‐equivalent root bending moments are not suitable for stall‐regulated wind turbines: when the cost function is minimized, the edgewise damping can be low, and the flapwise damping can approach zero during an extreme operating gust. A new cost function is proposed that leads to nicely balanced stall behavior and damping over the entire operating windspeed range. The method was used to design the blades of two multi‐MW, stall‐regulated, offshore wind turbines, comparable with the NREL 5 MW and NTNU 10 MW pitch‐regulated turbines. It is shown that the optimal stall‐regulated blade has a unique aerodynamic profile that gives high flapwise and edgewise damping and a uniform mean power output above the rated windspeed. The blades are described in sufficient detail that they can be used in further aeroelastic analyses, to compare large stall‐regulated and pitch‐regulated turbines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Different configurations of gearbox, generator and power converter exist for offshore wind turbines. This paper investigated the performance of four prominent drive train configurations over a range of sites distinguished by their distance to shore. Failure rate data from onshore and offshore wind turbine populations was used where available or systematically estimated where no data was available. This was inputted along with repair resource requirements to an offshore accessibility and operation and maintenance model to calculate availability and operation and maintenance costs for a baseline wind farm consisting of 100 turbines. The results predicted that turbines with a permanent magnet generator and a fully rated power converter will have a higher availability and lower operation and maintenance costs than turbines with doubly fed induction generators. This held true for all sites in this analysis. It was also predicted that in turbines with a permanent magnet generator, the direct drive configuration has the highest availability and lowest operation and maintenance costs followed by the turbines with two‐stage and three‐stage gearboxes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Non‐torque loads induced by the wind turbine rotor overhang weight and aerodynamic forces can greatly affect drivetrain loads and responses. If not addressed properly, these loads can result in a decrease in gearbox component life. This work uses analytical modeling, computational modeling and experimental approaches to evaluate two distinct drivetrain designs that minimize the effects of non‐torque loads on gearbox reliability: a modified three‐point suspension drivetrain studied by the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) and the Pure Torque® drivetrain developed by Alstom. In the original GRC drivetrain, the unequal planetary load distribution and sharing were present and they can lead to gear tooth pitting and reduce the lives of the planet bearings. The NREL GRC team modified the original design of its drivetrain by changing the rolling element bearings in the planetary gear stage. In this modified design, gearbox bearings in the planetary gear stage are anticipated to transmit non‐torque loads directly to the gearbox housing rather than the gears. Alstom's Pure Torque drivetrain has a hub support configuration that transmits non‐torque loads directly into the tower rather than through the gearbox as in other design approaches. An analytical model of Alstom's Pure Torque drivetrain provides insight into the relationships among turbine component weights, aerodynamic forces and the resulting drivetrain loads. In Alstom's Pure Torque drivetrain, main shaft bending loads are orders of magnitude lower than the rated torque and hardly affected by wind speed, gusts or turbine operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This contribution presents modal testing of a 2‐MW wind turbine on a 100‐m tubular tower with a 93‐m rotor developed by W2E Wind to Energy GmbH. This research is part of the DYNAWIND project of the University of Rostock and W2E. Beside classical modal analysis schemes, this contribution mainly focusses on the application of operational modal analysis techniques to a wind turbine. Specific problems are addressed, and hints for modal testing on wind turbines are given. Furthermore, an effective measurement setup is proposed for identification of the modal parameters of a wind turbine. The measurement campaign is divided in two parts. First, a measurement campaign using 8 sensor positions on a rotor blade was done while the rotor is lying on ground. Second, a detailed measurement campaign was done on the entire wind turbine with the rotor locked in Y position using 61 sensor positions on the tower, the mainframe, the gearbox, the generator, and the low‐voltage unit. While the rotor blade was tested by classical and operational modal analysis techniques, the entire wind turbine was tested by operational modal analysis techniques only. The mode shapes and eigenfrequencies of the wind turbine identified within the measurement campaigns are within the expected range of the design values of the wind turbine. But in contrast, the damping ratios differ strongly from those given in guidelines and literature. Furthermore, a strong influence of aerodynamic damping compared to structural damping is observed for the first tower mode even for a parked wind turbine.  相似文献   

11.
Wind turbine performance and condition monitoring play vital roles in detecting and diagnosing suboptimal performance and guiding operations and maintenance. Here, a new seismic‐based approach to monitoring the health of individual wind turbine components is presented. Transfer functions are developed linking key condition monitoring properties (drivetrain and tower acceleration) to unique, robust, and repeatable seismic signatures. Predictive models for extreme (greater than 99th percentile) drivetrain and tower acceleration based on independent seismic data exhibit higher skill than reference models based on hub‐height wind speed. The seismic models detect extreme drivetrain and tower acceleration with proportions correct of 96% and 93%, hit rates of 91% and 82%, and low false alarm rates of 4% and 6%, respectively. Although new wind turbines incorporate many diagnostic sensors, seismic‐based condition/performance monitoring may be particularly useful in extending the productive lifetime of previous generation wind turbines.  相似文献   

12.
Modern offshore wind turbines are susceptible to blade deformation because of their increased size and the recent trend of installing these turbines on floating platforms in deep sea. In this paper, an aeroelastic analysis tool for floating offshore wind turbines is presented by coupling a high‐fidelity computational fluid dynamics (CFD) solver with a general purpose multibody dynamics code, which is capable of modelling flexible bodies based on the nonlinear beam theory. With the tool developed, we demonstrated its applications to the NREL 5 MW offshore wind turbine with aeroelastic blades. The impacts of blade flexibility and platform‐induced surge motion on wind turbine aerodynamics and structural responses are studied and illustrated by the CFD results of the flow field, force, and wake structure. Results are compared with data obtained from the engineering tool FAST v8.  相似文献   

13.
This paper investigates the impact of extreme events on the planet bearings of a 5 MW gearbox. The system is simulated using an aeroelastic tool, where the turbine structure is modeled, and MATLAB/Simulink, where the drivetrain (gearbox and generator) are modeled using a lumped‐parameter approach. Three extreme events are assessed: low‐voltage ride through, emergency stop and normal stop. The analysis is focused on finding which event has the most negative impact on the bearing extreme radial loads. The two latter events are carried out following the guidelines of the International Electrotechnical Commission standard 61400‐1. The former is carried out by applying a voltage fault while simulating the wind turbine under normal turbulent wind conditions. The voltage faults are defined by following the guidelines from four different grid codes in order to assess the impact on the bearings. The results show that the grid code specifications have a dominant role in the maximum loads achieved by the bearings during a low‐voltage ride through. Moreover, the emergency brake shows the highest impact by increasing the bearing loads up to three times the rated value. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Interest in the exploitation of offshore wind resources using floating wind turbines has increased. Commercial development of floating horizontal axis wind turbines (FHAWTs) is emerging because of their commercial success in onshore and near‐shore areas. Floating vertical axis wind turbines (FVAWTs) are also promising because of their low installation and maintenance costs. Therefore, a comparative study on the dynamic responses of FHAWTs and FVAWTs is of great interest. In the present study, a FHAWT employing the 5MW wind turbine developed by the National Renewable Energy Laboratory (NREL) and a FVAWT employing a Darrieus rotor, both mounted on the OC3 spar buoy, were considered. An improved control strategy was introduced for FVAWTs to achieve an approximately constant mean generator power for the above rated wind speeds. Fully coupled time domain simulations were carried out using identical, directional aligned and correlated wind and wave conditions. Because of different aerodynamic load characteristics and control strategies, the FVAWT results in larger mean tower base bending moments and mooring line tensions above the rated wind speed. Because significant two‐per‐revolution aerodynamic loads act on the FVAWT, the generator power, tower base bending moments and delta line tensions show prominent two‐per‐revolution variation. Consequently, the FVAWT suffers from severe fatigue damage at the tower bottom. However, the dynamic performance of the FVAWT could be improved by increasing the number of blades, using helical blades or employing a more advanced control strategy, which requires additional research. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper investigates the relationship between wind turbine main‐bearing loads and the characteristics of the incident wind field in which the wind turbine is operating. For a 2‐MW wind turbine model, fully aeroelastic multibody simulations are performed in 3D turbulent wind fields across the wind turbine's operational envelope. Hub loads are extracted and then injected into simplified drivetrain models of three types of main‐bearing configuration. The main‐bearing reaction loads and load ratios from the simplified model are presented and analysed. Results indicate that there is a strong link between wind field characteristics and the loading experienced by the main bearing(s), with the different bearing configurations displaying very different loading behaviours. Main‐bearing failure rates determined from operational data for two drivetrain configurations are also presented.  相似文献   

16.
The hydrostatic wind turbine (HWT) is a type of wind turbine that uses hydrostatic transmission (HST) drivetrain to replace the traditional gearbox drivetrain. Without the fragile and expensive gearbox and power converters, HWT can potentially reduce the maintenance costs owing to the gearbox and power converter failures in wind power system, especially in offshore cases. We design an MFAC torque controller to regulate the pump torque of the HWT and compared with an torque controller. Then we design an MFAC pitch controller to stabilise the rotor speed of HWT and compared with a gain‐scheduling proportional‐integral (PI) controller and a gain‐scheduling PI controller with antiwindup (PIAW). The results indicate that MFAC torque controller provides more effective tracking performance than the controller and that MFAC pitch controller shows better rotor speed stabilisation performance in comparison with the gain‐scheduling PI controller and PIAW.  相似文献   

17.
The emphasis in this article is on the impact of fault ride‐through requirements on wind turbines structural loads. Nowadays, this aspect is a matter of high priority as wind turbines are required more and more to act as active components in the grid, i.e. to support the grid even during grid faults. This article proposes a computer approach for the quantification of the wind turbines structural loads caused by the fault ride‐through grid requirements. This approach, exemplified for the case of a 2MW active stall wind turbine, relies on the combination of knowledge from complimentary simulation tools, which have expertise in different specialized wind turbines design areas. Two complimentary simulation tools are considered i.e. the detailed power system simulation tool PowerFactory from DIgSILENT and the advanced aeroelastic computer code HAWC2, in order to assess of the dynamic response of wind turbines to grid faults. These two tools are coupled sequently in an offline approach, in order to achieve a thorough insight both into the structural as well as the electrical wind turbine response during grid faults. The impact of grid requirements on wind turbines structural loads is quantified by performing a rainflow and a statistical analysis for fatigue and ultimate structural loads, respectively. Two cases are compared i.e. one where the turbine is immediately disconnected from the grid when a grid fault occurs and one where the turbine is equipped with a fault ride‐through controller and therefore it is able to remain connected to the grid during the grid fault. Copyright copy; 2010 John Wiley & Sons, Ltd.  相似文献   

18.
With the increase of the wind turbine capacity, failures occur on the drivetrain of wind turbines frequently. Since faults of bearings in the wind turbine can lead to long downtime and even casualties, fault diagnosis of the drivetrain is very important to reduce the maintenance cost of the wind turbine and improve economic efficiency. However, the traditional diagnosis methods have difficulty in extracting the impulsive components from the vibration signal of the wind turbine because of heavy background noise and harmonic interference. In this paper, we propose a novel method based on data‐driven multiscale dictionary construction. Firstly, we achieve the useful atom through training the K‐means singular value decomposition (K‐SVD) model with a standard signal. Secondly, we deform the chosen atom into different shapes and construct the final dictionary. Thirdly, the constructed dictionary is used to sparsely represent the vibration signal, and orthogonal matching pursuit (OMP) is performed to extract the impulsive component. The proposed method is robust to harmonic interference and heavy background noise. Moreover, the effectiveness of the proposed method is validated by numerical simulation and two experimental cases including the bearing fault of the wind turbine generator in the field test. The overall results indicate that compared with traditional methods, the proposed method is able to extract the fault characteristics from the measured signals more efficiently.  相似文献   

19.
Improvement of condition monitoring (CM) systems for wind turbines (WTs) and reduction of the cost of wind energy are possible if knowledge about the condition of different WT components is available. CM based on the WT drive train shaft torque signal can give a better understanding of the gearbox failure mechanisms as well as provide a method for detecting mass imbalance and aerodynamic asymmetry. The major obstacle preventing the industrial application of CM based on the shaft torque signal is the costly measurement equipment which is impractical for long‐term use on operating WTs. This paper suggests a novel approach for low‐cost, indirect monitoring of the shaft torque from standard WT measurements. The shaft torque is estimated recursively from measurements of generator torque, high speed shaft and low speed shaft angular speeds using the well‐known Kalman filter theory. The performance of the augmented Kalman filter with fading memory (AKFF) is compared with the augmented Kalman filter (AKF) using simulated data of the WT for different load conditions, measurement noise levels and WT fault scenarios. A multiple‐model algorithm, based on a set of different Kalman filters, is designed for practical implementation of the shaft torque estimator. Its performance is validated for a scenario where there are frequent changes of operating points. The proposed cost‐effective shaft torque estimator overcomes all major problems, which prevent the industrial application of CM systems based on shaft torque measurements. Future work will be focused on validating the method using experimental data and developing suitable signal processing algorithms for fault detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Wind power is the world's fastest growing renewable energy source, but operations and maintenance costs are still a major obstacle toward reliability and widescale adoption of wind power, accounting for a large part of the cost of energy for offshore installations. Structural health monitoring systems have been proposed for implementing condition‐based maintenance. The wind energy industry currently uses condition monitoring systems that are mostly adapted from roating machinery in other power generation industries. However, these systems have had limited effectiveness on wind turbines because of their atypical operating conditions, which are characterized by low and variable rotational speed, rapidly varying torque, extremely large rotors and stochastic loading from the wind. Although existing systems primarily take measurements from the nacelle, valuable information can be extracted from the structural dynamic response of the rotor blades to mitigate potentially damaging loading conditions. One such condition is rotor imbalance, which not only reduces the aerodynamic efficiency of the turbine and therefore its power output but can also lead to very large increases in loading on the drivetrain, blades and tower. The National Renewable Energy Laboratory's fast software was used to model both mass and aerodynamic imbalance in a 5 MW offshore wind turbine. It is shown that a combination of blade and nacelle measurements, most of which can be obtained from standard instrumentation already found on utility‐scale wind turbines, can be formulated into an algorithm used to detect and locate imbalance. The method described herein allows for imbalance detection that is potentially more sensitive than existing on‐line systems, while taking advantage of sensors that are already in place on many utility‐scale wind turbines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号