首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
针对真空压力浸渗制备的单向碳纤维增强铝合金复合材料(CF/Al复合材料),采用细观力学数值模拟与实验结合的方法研究了其横向拉伸损伤演化和断裂力学行为,并分析了界面对复合材料横向拉伸力学性能的影响。结果表明,基于基体合金延性损伤和界面内聚力损伤本构所建立的细观单胞有限元模型,可以实现CF/Al复合材料横向拉伸弹塑性力学响应的计算和预测。复合材料横向拉伸时先后发生界面损伤、界面失效以及基体损伤累积与失效现象,界面损伤脱粘并诱发基体塑性损伤和失效是导致复合材料横向断裂的主要机理。增加界面强度有利于提高横向拉伸屈服强度和极限强度,界面刚度对极限强度影响不大,但增加界面刚度可有效提高复合材料横向拉伸弹性模量。  相似文献   

2.
针对真空压力浸渗制备的单向碳纤维增强铝基复合材料(CF/Al复合材料),采用细观力学数值模拟和实验相结合的手段研究了其在横向压缩载荷下的损伤演化与断裂力学行为,并分析了界面结合性能和纤维体积分数对复合材料横向压缩力学性能的影响。结果表明:基于纤维对角正方形分布RVE建立的细观力学有限元模型,可以较好地计算预测复合材料横向压缩变形力学行为。压缩变形初期界面首先发生损伤和失效现象,进而诱发界面附近基体合金的局部损伤;随压缩应变增加,界面和基体损伤逐渐发展并导致纤维的失效,复合材料横向压缩断口呈现出界面脱粘和纤维断裂共存的微观形貌。复合材料横向压缩弹性模量和极限强度随着界面强度增大而增大,而受界面刚度的影响较小;在相同界面性能条件下,复合材料横向压缩极限强度和弹性模量均随纤维体积分数的增大而减小。  相似文献   

3.
针对真空压力浸渗制备的碳纤维增强铝合金复合材料(CF/Al复合材料),分别采用延性损伤本构和内聚力界面本构定义基体合金和界面的损伤演化与失效行为。建立其细观力学单胞有限元模型,数值模拟获得了复合材料横向拉伸变形中基体合金和界面的细观损伤演化和失效过程,通过复合材料横向拉伸应力-应变试验曲线与数值模拟曲线对比,验证所建立细观力学有限元模型的可靠性。结合力学试验和拉伸断口分析,探索CF/Al复合材料横向拉伸变形时断裂力学行为规律及其失效机理。  相似文献   

4.
《塑性工程学报》2020,(2):154-164
针对单向石墨纤维增强铝合金复合材料(CF/Al复合材料),采用细观力学数值模拟与准静态压缩试验相结合的方法研究了其轴向压缩渐进损伤与断裂力学行为,并分析了纤维体积分数对CF/Al复合材料压缩力学性能的影响。结果表明,基于纤维正六边形排布RVE建立的细观力学有限元模型对CF/Al复合材料轴向准静态压缩变形力学行为的计算结果与实验结果吻合良好。复合材料轴向压缩时首先在界面处发生损伤,界面损伤的累积随后引起局部界面失效并诱发基体合金的损伤,变形后期纤维发生失效并导致复合材料产生轴向45°压缩破坏,压缩断口呈现出界面脱粘和局部纤维断裂共存的微观形貌,表明界面脱粘及其导致的纤维断裂是诱发复合材料轴向压缩失效的主要机理。轴向压缩载荷作用下基体合金塑性变形损伤后不易发生失效,纤维性能是决定复合材料轴向压缩力学性能的主要因素,增加纤维体积分数有利于提高复合材料的轴向压缩弹性模量和极限强度。  相似文献   

5.
针对连续碳纤维增强铝基复合材料(CF/Al复合材料),采用细观力学数值模拟与热性能试验结合的方法,研究了真空压力浸渗制备过程中的热收缩行为和热残余应力分布。结果表明,复合材料的横向热收缩应变量远大于轴向热收缩应变量,且具有横观各向同性,纤维随机分布的单胞有限元模型能够准确地预测复合材料轴向与横向热收缩行为曲线;复合材料制备完成后纤维和基体合金分别处于压应力和拉应力状态,基体和纤维的横向残余应力均小于其轴向残余应力,且均表现出横观各向同性;基体合金在轴向残余拉应力作用下会出现不同程度的损伤现象,特别是纤维间距较小部位过高的残余应力会引发界面的局部失效,从而不利于发挥复合材料承载性能,减少纤维局部偏聚是进一步改善提高复合材料力学性能的重要技术手段。  相似文献   

6.
以石墨纤维2.5维机织物为增强体,铝合金ZL301为基体材料,采用真空辅助压力浸渗法制备了2.5维织物Cf/Al复合材料,研究了3种织物预热温度下制备的复合材料相对致密度和微观组织形貌,分析了其界面产物组成与界面结构特征,测试了其经、纬向准静态拉伸变形力学行为并分析了其断口形貌。结果表明:复合材料织物的细观结构完整,内部纤维分布均匀,致密度随预热温度提高而略有上升,界面棒状产物为Al4C3相,其相对含量随预热温度的提高而增加,从而引起复合材料经向和纬向力学性能的下降。复合材料经向拉伸强度高于纬向拉伸强度,且其应力-应变行为呈现出显著的非线性特征,复合材料经向和纬向拉伸变形过程均可划分为3个阶段:初始弹性变形阶段、中间弹塑性变形阶段和最终损伤与断裂阶段。  相似文献   

7.
由于复合材料断裂特征的复杂性,尚未给出所受载荷与断裂特征之间的关系,通常认为失效模式与层板的基体、纤维类型及试验温度有关。本研究通过拉伸试验、断口观察等方法研究了碳纤维与玻璃纤维增强树脂基复合材料单向板在-55、23及70℃的0°拉伸失效行为,分析了单向板0°拉伸的断裂特征、失效模式及其影响因素。结果表明:复合材料单向板的0°拉伸主要有2种失效模式,纤维基体断裂和界面失效;由于2种失效模式所占的比例不同,形成多种断口形态;失效模式、断裂特征与复合材料的拉伸强度关系不大,主要与界面的结合强度有关;试验温度、纤维、基体等对其断裂特征与失效模式的影响也主要是界面强度变化所致。  相似文献   

8.
界面优化是提高铝基复合材料最为有效的手段。通过化学镀工艺成功制备0.2 μm厚Ni-Co-P合金镀层修饰的玄武岩纤维,并通过真空热压烧结工艺合成Ni-Co-P镀层修饰玄武岩纤维增强2024Al复合材料(BF(Ni-Co-P)/Al)。探究了Ni-Co-P镀层对BF(Ni-Co-P)/Al复合材料界面结构及拉伸性能的影响机制。结果表明:复合材料中Ni-Co-P镀层形成稳定的Ni-Co-P中间层,不仅抑制了玄武岩纤维与铝合金基体间的有害界面反应,且优化了二者间的结合强度。BF(Ni-Co-P)/Al复合材料密度及硬度明显优于BF/Al复合材料,且当玄武岩纤维体积分数为30vol%时,BF(Ni-Co-P)/Al复合材料屈服强度和抗拉伸强度分别为252和360 MPa,大幅高于未修饰纤维增强铝基复合材料和铝合金基体,并表现出渐进累积失效的断裂模式。  相似文献   

9.
用挤压铸造工艺制备了莫来石(mullite)短纤维增强马勒124合金(M124F)铝合金基复合材料.研究了其从常规室温到400℃高温的拉伸性能,以及热膨胀性能和硬度;体积分数为17%的莫来石(mullite)短纤维增的复合材料,在300℃高温强度比其他增强相复合材料提高15%以上.通过对拉伸断口的SEM观察,分析了复合材料的失效机制,裂纹源主要生成于增强纤维与基体的复合界面上.  相似文献   

10.
采用单纤维十字架结构试样测试分析了SiC纤维增强TC17复合材料横向力学性能,利用SEM对拉伸断口及横切面进行了显微观察,分析了界面失效位置,并结合有限元数值模拟计算,研究了界面损伤失效机制及裂纹扩展规律。结果表明,在横向载荷的作用下,单纤维试样应力-应变曲线的非线性拐点应力为(271±12) MPa,该点是界面完全失效的起始点。基于双线性内聚力模型的有限元分析结果与实验结果一致,表明复合材料界面失效模式为剪切失效,裂纹萌生于反应层和碳涂层的界面。有限元分析预测的裂纹萌生位置在与加载方向成40°~50°的圆周之间,实验中不同最大载荷下裂纹出现在与拉伸方向成24°~68°之间不同位置,预测宽度略小于实验结果,这种差异的主要原因是有限元模拟中界面设定为理想刚性界面且沿周向一致,而实际碳涂层和反应层的界面是非光滑的,沿圆周存在微缺陷。裂纹萌生后,在剪切应力作用下沿轴向和周向同时扩展,在沿周向扩展过程中,0°附近界面在径向拉伸应力作用下先于90°附近界面失效,随后90°附近界面在周向剪切应力作用下失效。界面完全失效后,应力重新分配,随载荷增加,界面张开程度加大,基体局部出现屈服,直至材料完全断裂。  相似文献   

11.
原位TiB2颗粒增强铝基复合材料及其力学性能   总被引:1,自引:1,他引:1  
对原位反应合成TiB2/A356铝基复合材料微观组织和力学拉伸性能进行了研究。结果表明,原位反应生成的颗粒增强相在复合材料基体中分布均匀,基体与颗粒间的界面洁净。复合材料强度随着颗粒含量的增加显著提高,与基体合金相比,TiB2质量分数为8%的TiB2/A356复合材料强度和弹性模量的提高幅度约为28%,TiB2质量分数为16%的TiB2/A356复合材料强度和弹性模量的提高幅度约为35%。复合材料的断裂主要是由于基体与颗粒界面脱粘,在拉伸应力作用下由此萌生微裂纹并扩展,导致界面处的基体撕裂,从而降低复合材料塑性。  相似文献   

12.
采用有限元法分析了在残余应力和外加横向载荷作用下纤维体积分数对SiC/Ti-6Al-4V复合材料横向拉伸行为的影响。通过弹簧连接纤维与基体界面的重合节点来模拟界面脱粘。结果表明,在界面结合强度一定时,界面脱粘应力(对应于应力-应变曲线上应变的跳跃)受0°方向界面径向残余应力影响较大;在界面脱粘先于基体屈服时,复合材料失效应力(对应于应力-应变曲线上的水平部分)主要取决于纤维体积分数,且体积分数越低,失效应力越高。  相似文献   

13.
利用挤压铸造法制备了 Al2 O3纤维增强 Al合金复合材料 ,对其界面孔隙率进行了测定 ,结合拉伸强度数据 ,讨论孔隙率对复合材料强度的影响 ;并通过有限元计算 ,分析了与拉伸轴平行、成 45°及与拉伸轴垂直的 3种纤维模型 ,得出纤维、基体、界面处应力分布。  相似文献   

14.
陶瓷基复合材料纤维拔出有限元研究   总被引:1,自引:0,他引:1  
采用粘结带模型描述复合材料界面的分离特性,利用有限元数值方法模拟了陶瓷基复合材料的纤维拔出的细观损伤和破坏过程,计算了其拔出过程的载荷-位移响应曲线,研究了界面结合强度、纤维的埋深长度以及热膨胀不匹配对纤维拔出过程的影响.结果表明该模型能很好的解释纤维拔出的破坏过程,纤维的最大拔出力和材料的承载能力都随面结合强度、纤维的埋入长度和基体的热膨胀系数增大而增大;纤维与基体热膨胀系数的不匹配对摩擦拔出力有直接影响.  相似文献   

15.
采用粘结带模型描述复合材料界面的分离特性,利用有限元数值方法模拟了陶瓷基复合材料的纤维拔出的细观损伤和破坏过程,计算了其拔出过程的载荷一位移响应曲线,研究了界面结合强度、纤维的埋深长度以及热膨胀不匹配对纤维拔出过程的影响。结果表明该模型能很好的解释纤维拔出的破坏过程,纤维的最大拔出力和材料的承载能力都随面结合强度、纤维的埋入长度和基体的热膨胀系数增大而增大;纤维与基体热膨胀系数的不匹配对摩擦拔出力有直接影响。  相似文献   

16.
分别以ZL102、ZL114A、ZL205A及ZL301这4种合金为基体,以Si C纤维为增强体,采用真空气压浸渗法制备SiC_f体积分数为40%的连续SiC_f/Al复合材料。采用TEM和SEM对不同基体合金的SiC_f/Al复合材料界面及断口形貌进行观察,并测试其拉伸强度。结果表明:不同基体合金的连续SiC_f/Al复合材料界面形貌存在明显差异,其力学性能及断口形貌亦存在较大的差异。其中,SiC_f/ZL102复合材料的界面存在细小的针状Al_4C_3相,无明显界面层,呈弱界面结合,平均拉伸强度为615.7 MPa,断口纤维拔出现象明显;SiC_f/ZL205A复合材料的界面存在块状的Al_4C_3相及CuAl_2相,呈强界面结合,平均拉伸强度为385.1 MPa,断口平齐;SiC_f/ZL114A复合材料的界面结合较SiC_f/ZL102复合材料的强,平均拉伸强度为475.9 MPa;SiC_f/ZL301复合材料的界面存在棒状Al_4C_3相,大量Mg元素的富集降低界面反应,界面结合强度适中,平均拉伸强度为769.3 MPa,断口出现韧窝,基体改变裂纹横向传播的方向。  相似文献   

17.
采用二维有限元模型分析了纤维四方、四方对角和六方三种排布方式下SiC/Ti-6Al-4V复合材料的横向力学性能。结果表明,在横向拉伸载荷作用下,纤维排布方式对基体的失效机理有重要影响,且纤维四方排布时复合材料的拉伸强度明显高于四方对角和六方排布时的拉伸强度。  相似文献   

18.
从晶体细观力学出发建立了金属基复合材料的本构模型,以Al-Al2Cu自生复合材料为模型材料,并依据各组元材料的单晶体变形-受载曲线,用数值法模拟计算了其拉伸变形过程,得到了与实验结果相符的应力-应变曲线,研究了变形过程中基体和增强相之间的应力分布规律、基体的滑移变形规律、以及相间间距和界面影响区的作用.结果表明,晶体细观力学方法用于金属基复合材料的分析和设计,能全面系统定量地细致反映组元材料性质和分布等因素对复合材料宏观力学性能及局部变形不均匀特性的影响.  相似文献   

19.
以石墨纤维三维五向织物为增强体,铝合金ZL301为基体材料,采用真空辅助压力浸渗法制备了三维五向增强Cf/Al复合材料,研究了不同温度制备的复合材料微观组织特征和界面反应程度,测试了复合材料在室温和高温下的拉伸力学性能并分析了其断口形貌。结果表明:复合材料相对致密度随制备温度提高而增加,纤维局部偏聚现象也明显减少,与此同时,界面反应物Al4C3相随制备温度提高而显著增多,530℃到570℃复合材料室温拉伸极限强度随组织缺陷减少而增加,570℃到600℃复合材料室温极限拉伸强度随界面反应程度增大而显著降低;高温拉伸极限强度随制备温度提高而增加,适当提高界面反应程度有利于提高复合材料高温力学性能,高温拉伸中基体合金回复软化和界面结合强度弱化促进了复合材料断裂过程中的纤维拔出与界面滑移。  相似文献   

20.
通过室温条件下的循环加卸载试验,研究编织SiC/SiC复合材料固有频率特性及内部损伤演化过程。结果表明:固有频率随循环加卸载过程中峰值应力的增大而减小,通过分别定义频率衰退参数Φ与模量衰退参数D表征了复合材料固有频率与弹性模量的折减程度。基于细观力学理论对编织陶瓷基复合材料循环加卸载迟滞回线进行理论计算,理论模拟结果与试验数据良好吻合。同时,分析计算结果还发现,随着循环加卸载过程中Φ的增加,材料弹性模量衰退参数D、界面脱粘比2ld/lc和纤维断裂概率q均呈明显上升趋势,当陶瓷基复合材料结构固有频率衰退1%时,基体出现开裂,界面发生脱粘;当固有频率衰退4.17%时,2ld/lc上升至1(即完全脱粘),q增加到2.5%,这表明复合材料固有频率的变化可以反映出材料内部的损伤失效过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号