首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
Ti-IF钢铁素体变形动态再结晶临界应变模型   总被引:6,自引:0,他引:6  
用Thermecmaster-Z热模拟试验机试验得出成分为0.006 7%C-0.045 0%Ti的Ti-IF(无间隙原子)钢在变形温度750~900℃和变形速率0.1~40 s-1时的应力-应变曲线,确定了Zener-Holloman参数Z与应变速率.ε和温度T(K)的关系式Z=.εexp(39 507/T),并建立了临界应变εc与原始晶粒尺寸d0和Z参数的临界应变方程εc=2.314 4×10-3×d-0.8003 9×Z0.050。结果表明,在相同变形速率下,850℃变形时动态再结晶最易发生,当变形温度提高至900℃(两相区)时,即使在低变形速率(1 s-1),也不发生动态再结晶。当变形速率大于1 s-1时,Ti-IF钢热加工时不能出现动态再结晶。临界应变预测值与实测值比较,平均误差≤5%。  相似文献   

2.
为优化后续热加工工艺,研究EA4T钢的热变形行为及微观组织演变规律。利用热模拟机对EA4T钢进行了单道次等温恒应变速率热压缩实验,变形温度为850~1 200℃,应变速率为0.01~10 s-1,真应变为0.9。结果表明:EA4T钢在低应变速率下(850~1 200℃,0.01、0.1 s-1)和高应变速率(950~1 200℃,1 s-1)、(1 050~1 200℃,10 s-1)条件下变形后发生了动态再结晶。动态再结晶可以通过改变微观组织从而决定钢的力学性能。将参数Z与微观组织演变结合,构建了EA4T钢的高温动态软化模型,可调控EA4T钢在热变形过程中发生动态回复、不完全动态再结晶、动态再结晶和晶粒长大的行为。采用电子背散射技术(EBSD)、透射电子显微测试等材料表征技术,分析了EA4T钢在不同变形条件下的动态再结晶晶粒、马氏体束的宽度和板条宽度的多尺度组织特征,建立了马氏体束宽与动态再结晶晶粒和变形参数Z的关系模型。研究结果可为EA4T钢热加工工艺提供理论指导。  相似文献   

3.
刘思涵  王存宇  徐海峰  曹文全 《钢铁》2020,55(9):97-103
 为了研究含铝冷轧中锰钢的超塑性能和在超塑性变形下的组织结构演化过程,对冷轧含铝中锰钢在800 ℃进行了高温拉伸试验和不同变形量下的微观组织结构表征。研究结果表明,0.05C5Mn2Al、0.10C5Mn2Al和0.15C5Mn3Al钢伸长率分别达到了740%、850%和350%,都获得了超塑性现象,EBSD表征结果表明0.05C5Mn2Al、0.10C5Mn2Al两种冷轧组织均匀细小,在高温拉伸过程中具有较高的稳定性,拉伸过程中铁素体与原奥氏体均匀长大,且最大晶粒尺寸小于10 μm;但0.15C5Mn3Al冷轧组织存在条带状的铁素体,该组织易于通过吞并细小的铁素体和原奥氏体晶粒而异常长大,高温拉伸后的尺寸达到了20 μm。通过对3种含铝冷轧中锰钢的超塑性行为与微观组织结构演化关系分析,认为初始均匀一致的冷轧组织具有高的组织稳定性而有利于超塑性,而具有粗大条带状的铁素体组织易于发生异常长大而不利于超塑性。  相似文献   

4.
采用Gleeble-3800热模拟机进行单道次压缩试验,研究了AH60C高强钢在变形温度850℃、950℃、1050℃,应变速率0.1 s-1、1s-1、10s-1条件下的动态再结晶行为。采用Zener-Hollomon参数的正弦函数计算出材料参数值α、n、A以及AH60C高强钢热变形激活能Q,并且利用加工硬化原理来计算动态再结晶临界条件。结果表明:随着变形温度的升高,流变应力降低,随着应变速率的增大,流变应力增大,并且变形温度越高,应变速率越低,动态再结晶越彻底;计算出的AH60C高强钢热变形激活能Q为293 305.163 J/mol;临界应变随着变形温度的升高而降低,随着应变速率的增大而增大,且在本次试验条件下,AH60C高强钢动态再结晶临界应变预测模型为εc=3.04×10((-4))Z1.889 75。  相似文献   

5.
通过Gleeble-3500热模拟机研究了铸态Fe-28Mn-10Al-0.8C低密度高强钢在850~1050℃温度范围和0.01~10 s-1应变速率范围内的热压缩行为和组织转变。实验结果表明,Fe-28Mn-10Al-0.8C钢的动态回复(DRV)和动态再结晶(DRX)行为与变形温度、应变和应变速率直接相关。基于双曲正弦函数和线性拟合,实验钢的可用活化能(Q)为454.64 kJ/mol。给出了实验钢在热压缩变形过程中的组织演变和动态再结晶过程:变形温度的升高或应变速率的降低,可促进奥氏体的动态再结晶和晶粒长大;随着应变速率的增加,会得到更细小的奥氏体动态再结晶晶粒。  相似文献   

6.
利用Gleeble-3800热模拟试验机对Fe30Mn9Al0.9C钢进行不同变形温度(750~1 150℃)和不同应变速率(0.01~10 s-1)的热压缩试验,研究热变形行为及组织演变规律。结果表明,试验钢是温度和速率敏感材料,随着变形温度升高和应变速率的降低,变形抗力逐渐降低,动态再结晶更容易发生;变形后获得奥氏体基体分布极少量不连续带状铁素体的组织,铁素体优先承担应变导致在变形初期发生流变应力随应变增加急剧下降的现象;构建本构方程,得到激活能值为399.534 kJ/mol;通过构建热加工图得到良好加工性能的工艺窗口为950~1 050℃、0.01~0.07 s-1和1 075~1 150℃、1~10 s-1。  相似文献   

7.
对不同温度下退火处理后的细晶TC4合金板材进行超塑性拉伸变形,研究该合金在750~850℃,应变速率为3×10-4~1×10-3 s-1条件下的超塑性拉伸变形行为,分析晶粒尺寸、变形温度和β相含量对合金性能的影响。结果表明:退火后的(α+β)型细晶Ti-6Al-4V合金表现出良好的超塑性,并且晶粒越细,最佳超塑性变形温度越低。晶粒直径为2.5μm、β相含量(体积分数)为9.6%的TC4合金在温度为800℃、应变速率为1×10-3 s-1的变形条件下,伸长率最大,达到862%。不同晶粒度合金的应变速率敏感系数m均随变形温度升高先上升后下降,最高达0.61。β晶粒处于α晶粒三叉晶界处,升温或拉伸变形时聚集并沿α晶界长大,形成细长的β晶粒并逐渐变粗大,因此在900℃以上高温下合金的超塑性变形能力降低。  相似文献   

8.
用Gleeble-1500热模拟实验机对YF45MnVS钢(%:0.48C、0.45Si、1.36Mn、0.009P、0.043S、0.086V)200 mm×200 mm铸坯上切取的Φ8mm试样进行950~1 200℃,变形速率10-2~101s-1变形量10%~50%的单道次等温压缩试验。结果表明,低应变速率和大变形量有利于实验用钢动态再结晶的发生。通过计算得到YF45MnVS钢在950~1 200℃的动态再结晶激活能为299.55 kJ/mol。  相似文献   

9.
采用高能球磨及真空热压烧结的方法制备超细晶/纳米晶双相γ-TiAl基合金,将名义成分为Ti-45Al-7Nb(%,原子分数)的混合粉末经40 h高能球磨后,粉末达到纳米级。球磨后的混合粉末经真空热压烧结(烧结温度1200℃,压力30 MPa,保温保压1 h)。研究该合金在温度为1000,1050和1100℃,应变速率为1×10-4,1×10-3和1×10-2s-1 3个变形速率条件下的高温压缩组织、流变行为和本构关系。研究结果表明:经过高能球磨及真空热压烧结原位合成的组织为超细晶α2-Ti3Al及γ-TiAl双相等轴状合金组织,晶粒尺寸小于5μm。合金为热敏感型和应变速率敏感型合金,合金压缩流变应力随应变速率的降低和温度的升高而下降。高温热压缩时,合金组织由规整等轴状被压变形为长条形,形变主要发生在γ-TiAl相中,晶界和γ相晶内可见位错及孪晶,孪晶及位错为主要的形变机制。在1000,1050和1100℃,1×10-4,1×10  相似文献   

10.
Ti-IF钢动态再结晶模型   总被引:1,自引:0,他引:1  
徐光  徐楚韶 《特殊钢》2006,27(6):13-14
通过Thermecmastor-Z热模拟实验机对Ti-IF(无间隙原子)钢(%:0.009C、0.017Si、0.13Mn、0.012P、0.013S、0.05Ti、0.025Als)在750℃、850℃和变形速率0.1,1,20s-1下进行单道次压缩变形实验。得出Ti-IF钢加工硬化率-应变曲线、动态再结晶状态图和动态再结晶体积分数方程。实验结果表明,对于无明显峰值应变的应力-应变曲线,采用加工硬化率方法确定峰值应变和稳态应变是一种有效的方法。  相似文献   

11.
陈楚  何毅  黄军波  霍洁 《特殊钢》2014,35(5):57-60
通过Φ250 mm锻件切取的试样在Gleeble-3500热模拟机于850~1150℃以应变速率0.01~10s-1对高速列车车轴钢30NiCrMoV12(/%:0.26C,0.33Si,0.62Mn,3.01Ni,0.82Cr,0.56Mo,0.10V)进行了热压缩试验。研究了车轴钢在热变形过程中奥氏体变形行为及再结晶规律,确定了车轴钢的热变形方程,建立应变量ε为0.5和0.9的热加工图。结果表明,在应变速率一定时,温度越高,变形量越大,则越有利于动态再结晶的发生;随着温度升高以及应变速率降低,能量耗散效率η逐渐升高;当真应变0.5,温度1100℃,应变速率0.01 s-1时,变形能量耗散效率达到最大值0.41。该车轴钢在1000~1150℃,应变速率0.01~1.0s-1时,具有较好的可锻性。  相似文献   

12.
2 mm窄带钢Q195L (/%: ≤0.08C、0.05~0.10Si、0.30~0.40Mn、≤0.035P、≤0.035S)的生产流程为80 t转炉-钢包合金化和软吹氩-150 mm×150 mm方坯连铸-窄带轧制工艺。金相、扫描电镜、能谱仪等对窄带钢边裂分析表明,边裂处存在FeO和网状裂纹。通过控制钢水氧含量从原≤80×10-6 降至≤60×10-6 ,吹氩时间从≥3min增至≥5 min,中间包钢水过热度从原25~35℃降至15~25℃,加热炉两侧温差≤40℃,减小冷却水嘴间距,增加一次立轧压下量2~5 mm等工艺措施,防止了该钢边裂发生,取得了良好的生产效果。  相似文献   

13.
非调质钢S38MnSiV(/%:0.41~0.45C、0.55~0.70Si、1.40~1.55Mn、≤0.025P、≤0.025S、0.10~0.20Cr、0.11~0.15V、0.012 0~0.020 0N)的生产流程为40%铁水+废钢-100 t EAF-LF-VD-160 mm×160 mm~260mm×340 mm CC工艺。通过控制电弧炉出钢终点[C] 0.15%~0.30%,出钢[P]≤0.012%,出钢温度1 640~1 680℃,高碱度渣精炼,控制钢液铝含量,VD后喂氮化锰线控制钢液中氮含量等工艺措施,8炉生产结果表明,钢中氧含量-[O]5×10-6~11×10-6,[H]1.2×10-6~1.5×10-6,[N]135×10-6~180×10-6;260 mm×340 mm铸坯热孔成Φ140 mm棒材经880℃ 120 min正火风冷,580℃ 240 min回火空冷后的抗拉强度Rm为870~925 MPa,屈服强度Rel为560~605 MPa,其冶金质量满足标准要求。  相似文献   

14.
采用60 t BOF-LF-VD-220 mm× 220 mm CC-轧制工艺流程成功试制履带链轨节用Φ50 mm 35MnB圆钢(0.35%C,0.28% Si,1.25% Mn,0.0020%B,0.030% Ti).通过优化BOF出钢[C]≥0.10%和[P]≤0.015%,精炼渣碱度(R)3.87 ~ 5.73...  相似文献   

15.
通过将钢中Mn含量从1.55%~1.65%提高至1.75%~1.85%,用0.25%~0.35%Cr替代0.20%~0.25%Ni,并加入0.01%~0.04%Ti微合金化;RH真空精炼以控制[N]≤80×10-6、[O]≤15×10-6;连铸二冷水量由0.11 L/kg降至0.08 L/kg,并改变配水比例,使出坯温度由620~680℃提高至700~750℃,并采用连铸坯罩冷和钢材缓冷等工艺措施,降低了R3级系泊链钢的生产成本,避免了350 mm×470 mm铸坯纵裂的产生,并使钢材的强度和-20℃韧性均满足标准要求。  相似文献   

16.
利用 Gleeble-3500型热模拟机,研究700MPa 管线钢(/%:0.07C,0.90Si,0.60Mn,0.008P,0.002S, 0.30Ni,0.10Cr,0.12Mo,0.06V,0.03Nb,0.28Cu,0.04Alt,0.0060N) 20mm热轧板在850~1250℃ 和应变速率0.01~1s-1下单道次热压缩变形及组织演变,得出单道次压缩变形真应力-真应变曲线,热压缩再结晶动态图和动态再结晶开始时间与变形温度关系(RTT)曲线。研究结果表明,发生再结晶由变形温度和应变速率共同决定,该700MPa管线钢在温度1100~1250℃和应变速率0.01~1s-1下压缩变形时容易发生再结晶。再结晶发生机制是热压缩应变,使得原始晶粒破碎、新晶界产生迁移促使新晶核生成。  相似文献   

17.
用Gleeble-2000热模拟机研究了Q345C钢250 mm×1 300 mm连铸坯热履历-连铸坯冷却过程和冷坯加热过程(300~1 320℃)的温度变化,应变速度(3~3×10-4 s-1)和降温速率(1~20℃/s)对热塑性的影响。结果表明,Q345C钢从1320℃冷却到钢的第Ⅲ脆性区,冷却速度越高,钢在第Ⅲ脆性区塑性越差;在600~850℃,连铸坯冷装加热后的热塑性要好于从液态直接冷却到这个温度区间的热塑性;在钢的第Ⅲ脆性区内,钢的热塑性随变形速率增大而变好。  相似文献   

18.
通过设计成分(/%:0. 09C,0. 15Si,l. 15Mn,0. 58Ni,0. 47Cr,0. 44Mo,0. 033V,0. 022Nb,0. 0012B, 0.036Al,0.014Ti),控制熔炼分析N含量≤20x10-6冶炼,钢锭最高加热温度≤ 1 200℃ 轧制、930℃淬火、610℃回火,开发出的60 mm厚SX780CF钢板屈服强度780 MPa,抗拉强度887 MPa,延伸率18% ,5%应变250 °C时效后 -20 ℃冲击功(KV2) 203 - 210 J,满足水电站用800 MPa级低焊接裂纹敏感性高强钢技术要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号