首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
400系不锈钢中的氮能恶化晶间腐蚀、低温冲击韧性、缺口敏感性和焊接等性能,在低耗、高效前提下降低氮含量成为AOD炉冶炼中的重要课题。分析了400系不锈钢冶炼中的脱氮原理,采用不同吹氩工艺研究了0Cr13钢、0Cr17钢、1Cr13钢的吹氩量与AOD炉终点氮含量的对应关系。探讨了用回归分析法确定400系不锈钢吹氩脱氮工艺控制合适的吹氩量、氮氩切换点,并进行了生产试验。  相似文献   

2.
《特殊钢》2017,(4)
邢钢一步法冶炼不锈钢的流程为铁水脱磷-扒渣-AOD-LF-CCM。分析了还原渣碱度1.5~2.2对锰收得率的影响和0Cr12Mn15NiCuN钢中氮含量对吹氩脱氮量的影响,得出控制炉渣碱度2.0~2.3可使锰收得率97%以上,在脱碳期和还原期吹氮,还原期结束后58 t钢水吹人60~80 m~3氩气,可使钢液中氮含量控制在0.18%~0.25%。60 t AOD生产结果表明,与"电弧炉+AOD"的两步法生产模式相比,采用脱磷铁水直兑AOD的一步法模式生产0Cr12Mn15NiCuN钢的总成本降低约500元/t。  相似文献   

3.
马琼  胡秋芳  冯捷 《特殊钢》2012,33(5):38-39
转炉后吹氩气搅拌工艺可以更进一步促进钢液中的碳氧反应,有效降低转炉冶炼终点的钢液氧含量。通过对120 t复吹转炉的后吹氩气搅拌工艺的工业试验结果表明,后吹氩气搅拌可降低转炉终点碳氧积,底吹流量800 m3/h的氩气搅拌5 min后,[O]从吹氩前的897×10-6,降至400×10-6;(FeO)从18.5%降至13.7%,平均[S]从0.009%降至0.005%,平均[P]从0.008%降至0.006%;搅拌3~6 min钢液平均温度降低10~20℃。  相似文献   

4.
430铁素体不锈钢中的氮能恶化晶间腐蚀、低温冲击韧性、缺口敏感性以及焊接等性能。在热力学分析的基础上,研究了430铁素体不锈钢冶炼过程中初始碳质量分数、温度、氩氧比以及冶炼时间等工艺参数与对终点氮质量分数的影响。研究表明,在一定范围内,初始碳质量分数越高,氩氧比越大,脱氮效果越好;吹氩20min左右时脱氮效果最好,脱氮率可达到60%左右,继续延长冶炼时间会有回氮现象发生。  相似文献   

5.
张永亮 《炼钢》2013,29(1):40-42,47
针对AOD精炼0Cr18Ni9不锈钢时,钢中氮含量和氩气消耗波动较大的问题,研究了AOD精炼工艺因素如钢水初始碳含量、合金含量、温度,及过程吹氧气量、吹氮气量、吹氩气量、吹炼时间等对终点氮含量的影响,研究并优化了AOD的操作工艺参数.  相似文献   

6.
以316L不锈钢为研究对象,在实验室通过刚玉坩埚-硅钼棒炉研究了钢液温度1 540℃时,吹氮流量(0.1 l·min~(-1);0.2 l·min~(-1);0.3 l·min~(-1)),吹氩时间对1kg不锈钢液中氮含量影响。结果表明,钢中氮含量随吹氩时间、吹氩流量增加而降低;吹氩流量越大,脱氮速率越大;当吹氩气量控制在0.1 l·min~(-1)时,钢水终点氮含量与吹氩时间成线性关系,而当氩气量控制在0.2 l·min~(-1)或者0.3 l·min~(-1)时,钢水终点氮含量与吹氩时间成二次关系。  相似文献   

7.
邢梅峦  包燕平  林路 《特殊钢》2015,36(2):25-27
0.79%~0.86% C  SWRH82B高碳钢的生产流程为130 t顶底复吹转炉-LF-8流150 mm×150 mm坯连铸工艺。通过转炉吹炼时采用较高泡沫渣高度,终点枪位较其他钢种高100~150 mm,转炉全程底吹氩0.02~0.05 m3/(t·min),圆流出钢,LF精炼时快速成渣,合适的吹氩量20~30 m3/h,连铸全程保护等工艺措施,有效控制钢中氮含量,205炉氮含量分析表明,钢中氮含量为13.7×10-6~37.4×10-6,平均氮含量为23.3×10-6  相似文献   

8.
利用BP神经网络预测AOD炉冶炼含氮不锈钢氮含量   总被引:3,自引:0,他引:3  
陈宏  郑宏光  陈伟庆 《钢铁》2005,40(11):30-33,74
根据AOD炉吹氮气冶炼含氮不锈钢的生产条件,运用BP神经网络建立了含氮不锈钢氮含量预测模型和吹氩时间预测模型。模型可利用生产现场的实际操作数据预测钢中氮含量,并可预测冶炼过程中控制钢中氮含量所需要的吹氩时间。结果表明,预测结果准确率较高,模型适用性较强。  相似文献   

9.
AOD炉冶炼含氮不锈钢氮成分控制的研究   总被引:1,自引:0,他引:1  
李学锋  李正邦 《钢铁》2007,42(7):18-21
对氮在不锈钢熔体中溶解的热力学和动力学行为进行了理论分析,指出氮在不锈钢熔体中溶解度随钢水温度降低和铬、锰、钼含量增加而升高,而随着镍和碳含量的增加而降低;对AOD炉冶炼不锈钢吹氮合金化工艺控制模型进行了理论研究和实际应用,指出在AOD炉中氮含量随着钢水碳含量、温度、供氧强度、吹氩强度的变化而变化,该工艺适合冶炼钢种的氮含量小于该钢种在常压下理论氮溶解度的90%,为保证氮成分精度,以小于80 %为宜.  相似文献   

10.
连铸过程中,通过包盖向中间包内吹入氩气可降低中间包内氧气质量分数,增强中间包保护浇注效果,减少钢水二次氧化。以6流方坯中间包为对象,针对其空包阶段与稳浇阶段包盖吹氩过程建立数值计算模型。为验证模型准确性,采用手持烟气分析仪测定了不同吹氩流量和不同吹氩时刻中间包氧气含量,并与计算值进行了对比,发现两者相对误差小于7.5%。基于该模型计算分析了采用不同工艺方案(包括吹氩管布局、氩气流量、吹氩时间)进行包盖吹氩时中间包氧气含量变化规律,据此确定了合理的包盖吹氩工艺方案为,吹氩管布放于包盖孔两侧,烘烤孔密封、塞棒孔畅通,空包吹氩阶段氩气流量不小于120 m3/h,中间包稳浇阶段氩气流量不小于60 m3/h。采用该工艺方案开展了工业试验,中间包内的氧气质量分数可稳定维持在0.1%以下,RH出站至中间包钢水增氮降低18.3%,由7.1×10-6降低至5.8×10-6,钢轨B、C类夹杂物评级得到改善。研究结果为设计中间包包盖吹氩工艺、增强中间包保护浇注效果提供了理论指导。  相似文献   

11.
易正明  肖慧 《特殊钢》2013,34(2):45-47
钢厂试验的低碳铝镇静钢(/%:0.036~0.037C、0.009Si、0.173~0.176Mn、0.012~0.013P、0.005~0.006S)生产流程为200 t LD转炉-钢包吹Ar精炼(LBAr)-230 mm×1 300 mm板坯连铸工艺。通过LD转炉挡渣出钢,并加入Mn-Fe、铝丸进行预脱氧和合金化3 min,钢水T[O]和[N]分别为91.8×10-6和19.4×10-6,在氩站经10~12 min 25~45 m3/h流量吹氩和3~5 min 15~25 m3/h的软吹氩后,T[O]降至42.3×10-6,[N]为22.0×10-6,中间包和铸坯T[O]分别为38.3×10-6和28.9×10-6,[N]分别为23.6×10-6和26.5×10-6。该流程生产的铸坯满足T[O]≤30×10-6的内控要求。经氩站精炼后,显微夹杂物去除率为30.0%,而大型夹杂物去除率达58.7%;显微夹杂物主要为脱氧产物Al2O3;大型夹杂物主要为SiO2、Al2O3、SiO2-Al2O3、CaO-SiO2-Al2O3。  相似文献   

12.
安杰  赵越  李忠伟  魏仁杰 《特殊钢》2015,36(6):10-12
依据30 t VOD生产数据,在初始[C]0.50%~0.60%,初始[Si]0.12%~0.20%,初始钢水温度1 640~1 650℃,氩和氮气压分别为0.8×106~1.0×106 Pa和1.5×106~1.6×106Pa的条件下,对比底吹氩气和底吹氮气两种工艺在入VOD初始、吹氧脱碳以及还原脱气后的不锈钢(0.04%~0.06%N)中氮含量。结果表明,VOD底吹氮气精炼后Cr13型和Cr17型两类不锈钢的钢液氮含量为260×10-6和300×10-6,其氮合金化效果显著;常压下氮气搅拌Cr13型和Cr17型不锈钢钢液的平均增氮速率为40×10-6/min和45×10-6/min;钢液温度升高,增氮速率增加,通过降低VOD精炼不锈钢的钢液氧含量,能够提高底吹氮气的氮合金化效果。  相似文献   

13.
253MA钢(/%:0.05~0.10C,1.2~2.0Si,20~22Cr,10~12Ni,0.14~0.20N,0.03~0.08Ce)是在21Cr-11Ni不锈钢的基础上,通过N合金化和添加稀土元素Ce开发的耐热奥氏体不锈钢。由于该钢种的熔点偏低,钢液的流动性差。因此,氮气合金化、稀土合金化是冶炼过程中的工艺难点。通过对稀土加入方式、过程脱氧、以及精确控N模型等研究,采用AOD全程氮气搅拌,AOD出钢前按照1.8~2.2 m3/t钢吹氩降氮,钢中[O]可降低到15×10-6~20×10-6,LF按13 m/t钢喂入铈线,实现了253MA不锈钢的批量生产。  相似文献   

14.
通过在210 t RH精炼IF钢3个浇次的试验,采用扫描电镜详细研究了RH精炼过程中调Ti时机对IF钢洁净度的影响。结果表明,加Al后2、4、6 min调Ti,RH结束时钢液中的N含量平均分别为26.7×10-6、23.6×10-6、27.4×10-6。当吹氧升温所耗氧气量在30~40 m3,RH到站氧平均为579×10-6时,RH结束T[O]为70.3×10-6,当吹氧升温氧耗量在75~90 m3,RH到站氧平均为669×10-6时,RH结束T[O]为109.2×10-6。随着加Al前氧活度增加,RH结束时T[O]总体呈增加趋势。加Al后6 min调Ti钢中5 μm当量直径夹杂物数量密度最低为9.32个/mm2,夹杂物数量密度最低。  相似文献   

15.
杜和平  杨志才 《特殊钢》2015,36(1):25-27
兴澄特钢生产碳素结构钢和船板用钢的生产流程为150 t BOF-LF-RH-200~250 mm板CC工艺。统计分析了精炼过程造渣埋弧操作、送电制度、LF加热时间、钢包底吹氩等工艺因素对钢水增氮的影响。通过控制除尘吸风管道阀门开启度,保持LF内微正压操作,精炼前采用较高供电功率,后期用低供电功率,精炼前、中、后期分别采用氩气流量200,400~500,200~300 L/min,以及控制LF渣量1.2%等措施可使LF精炼过程的增氮量≤5×10-6,不经过RH真空处理,可控制板坯氮含量≤50×10-6。  相似文献   

16.
无取向硅钢的磁性能与钢的洁净度水平密切相关。为实现对无取向电工钢冶炼过程氧含量的合理控制,分析了无取向电工钢冶炼过程碳氧含量变化数据,热力学计算转炉终点临界碳含量与炉渣αFeO。结果表明:随着转炉终点碳含量的降低,终点氧含量升高且波动范围大,合理出钢碳含量应控制为0.03%~0.05%;为满足炉渣中T.Fe≤24%的现场生产要求,终点碳含量应高于0.031%;钢包底吹氩气可有效降低钢液中过剩氧,降低钢液的平均碳氧积;据现场生产数据,RH精炼前理想碳、氧含量应控制为0.025%~0.035%和500×10-6~650×10-6,相应转炉终点碳含量控制为0.03%~0.04%。  相似文献   

17.
王荃  林媛  苗晓  张文康  王航宇 《特殊钢》2014,35(6):15-19
通过建立的6:10几何相似比的模拟180mm×700 mm板坯结晶器的水模型(108 mm×420mm),使用数字图像处理技术,分析了水量2.54~3.16 m3/h,气量0.037~0.110 m3/h,滑板开口度51%~100%,水口浸入深度78~108 mm等参数对水口吹氩板坯结晶器水模型内宽面含气率分布的影响。结果表明,当水量3.16 m3/h(相当于原型1.50m3/h),气量0.037 m3/h(原型0.120 m3/h),水口底部形状为凹形,滑板开口度51%,水口浸入深度78 mm(原型130 mm)时,水模型内气泡分布相对均匀,有利于流场的改善和夹杂的上浮去除。180 mm×700mm铸坯的生产性试验表明,采用优化的参数生产的超低碳钢连铸坯中≥30μm的夹杂物量和夹杂物总量均显著降低。  相似文献   

18.
研究了超低碳搪瓷钢RH减泵增氮的规律以及搪瓷钢中氮含量对夹杂物的影响。结果表明,RH减泵增氮25 min以内,减泵时间与钢中氮含量的关系符合二次项公式γ=-0.226x2+9.429x+31.21。搪瓷钢中夹杂物主要是含Ti的第二相析出物及少量单独的Al2O3颗粒。小尺寸夹杂物成分以TixS为主,大尺寸夹杂物成分以TiN为主。常规工艺搪瓷钢中氮含量为0.0038%,两个增氮的搪瓷钢中氮含量分别为0.010 8%、0.0127%,对应的钢中夹杂物总量分别是355.61、545.74、558.77 μm2/mm2。常规工艺搪瓷钢中各个尺寸区间的夹杂物数量都是最少的。考虑搪瓷钢储氢性能和RH增氮时间,钢中氮含量宜控制在0.01%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号