首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lectin-like molecules on the murine macrophage cell surface   总被引:1,自引:0,他引:1  
Lectin-like molecules on the surface of murine peritoneal exudate macrophages induced by thioglycolate or an anti-tumor streptococcal preparation, OK-432, were investigated and isolated. Furthermore, their sugar-binding specificities and their role in macrophage-mediated tumor cytotoxicity were examined. A neoglycoprotein, D-galactose (Gal)-bovine serum albumin, bound to these murine peritoneal macrophages. This binding of Gal-bovine serum albumin was inhibited by D-galactose, and by complex-type oligosaccharides (unit B) and high mannose-type oligosaccharides (unit A) prepared from porcine thyroglobulin. When thioglycolate-elicited macrophages were activated by lipopolysaccharide and/or the culture supernatant of concanavalin A-activated mouse spleen cells, they became tumoricidal and the number of the lectin-like molecules on the macrophage surface was found to increase. Since the binding and cytotoxic activities of these tumoricidal macrophages toward tumor cells were partially inhibited by D-galactose, the D-galactose-binding lectin-like molecules on the surface of tumoricidal macrophages might play an important role in macrophage-mediated cytotoxicity. These lectin-like molecules were then isolated from solubilized murine peritoneal exudate cells labeled with pyridoxal 5'-phosphate and sodium [3H]borohydride by affinity chromatography on columns of asialo unit B oligosaccharide-Sepharose 4B and/or beta-D-galactose-Bio-Gel P-100. The proteins bound to the asialo unit B oligosaccharide-Sepharose 4B column and eluted specifically were found to have approximate molecular weights of 79 000 and 18 000, and the protein bound to and eluted from the beta-D-galactose-Bio-Gel P-100 column had an approximate molecular weight of 77 000. These isolated proteins bound to the surface of glutaraldehyde-fixed tumor cells, and their binding was inhibited by D-galactose and also by D-mannose. Since most of the 77 kDa protein bound to the asialo unit B oligosaccharide-Sepharose 4B, this protein was assumed to be identical with the 79 kDa protein. These results suggest that the lectin-like molecules on murine macrophages have wide specificity and that one lectin-like molecule can bind both D-galactose and D-mannose.  相似文献   

2.
Upon incubation with fluoresceinylated neoglycoproteins, isolated macronuclei from the ciliated protozoan Euplotes eurystomus display different labelling patterns depending on the nature of the sugar bound to the neoglycoproteins. Specific sugar-binding components (i.e., lectin-like molecules) are associated with presumed nucleoli and with the macronuclear replication bands. This is the first demonstration that DNA synthesis and sugar-binding components are co-localized in an eukaryotic cell.  相似文献   

3.
The intranucleolar distribution of sugar-binding sites (i.e., lectin-like molecules) was analyzed in segregated nucleoli of actinomycin D-treated HeLa cells. The detection of sugar-binding sites was performed by incubation either of permeabilized nuclei in the presence of fluorescein-labeled neoglycoproteins or of ultrathin sections cut through in situ-fixed nuclei in the presence of gold-labeled neoglycoproteins. In the former case, the fluorescent nucleolar components were identified by comparison with the nucleolar components of similarly treated cells observed in electron microscopy. For the first time, this study reveals the presence of sugar-binding sites in both the fibrillar and the granular components of the nucleolus. In view of the data already reported on the biochemical composition of the nucleolus, some of our results led us to conclude that the nucleolar sugar-binding sites are lectin-like proteins. These proteins could be associated with preribosomes since the nucleolus is the site of both synthesis and stockage of ribosomal precursors. Some results from this study, however, show that the possibility of a relationship between some lectins and a structural component cannot be excluded.  相似文献   

4.
Metabolic labelling by [14C]palmitic acid showed that growth of Streptococcus mutans LT11 in raffinose, an inducer of the msm operon, resulted in increased production of a 45-kDa lipoprotein corresponding to MsmE, which is believed to be a sugar-binding protein. MsmE was also labelled when an msmE clone was expressed in Escherichia coli. The presence of a lipid anchor on MsmE provides a likely explanation of how the sugar-binding protein component of the msm binding protein-dependent multiple sugar transport system is retained at the cell surface.  相似文献   

5.
The sugar-binding site of the L-arabinose-binding protein, an essential component of the high affinity L-arabinose uptake system in Escherchia coli, is located deep in a cleft formed by the asymmetric contributions from both of the two similar domains. The site was unambiguously identified with the electron-rich substrate analog 6-bromo-6-deoxy-D-galactose in a difference Fourier analysis. The observation that the original native structure might have been solved with bound L-arabinose necessitated the synthesis of a heavy atom analog, its structure consistent with the known sugar-binding specificity of the protein. Difference Fourier maps (3.5 A) of crystals soaked in 46 mM analog showed a peak 3.5 times background, which is attributed to the -CH2Br moiety of the analog. Superposition of a difference map onto a 2.8-A native electron density map indicated that the difference peak is 6 to 7 A from the reactive single cysteine (Cys-64) and partially coincident with an "extraneous" density found in the native map. This "extraneous" peak was previously attributed to a bound L-arabinose molecule, and its presence accounts for the early failures of difference Fourier analyses of crystals soaked in or co-crystallized with L-arabinose to locate the sugar-binding site.  相似文献   

6.
Human RegIV protein, which contains a sequence motif homologous to calcium-dependent (C-type) lectin-like domain, is highly expressed in mucosa cells of the gastrointestinal tract during pathogen infection and carcinogenesis and may be applied in both diagnosis and treatment of gastric and colon cancers. Here, we provide evidence that, unlike other C-type lectins, human RegIV binds to polysaccharides, mannan, and heparin in the absence of calcium. To elucidate the structural basis for carbohydrate recognition by NMR, we generated the mutant with Pro91 replaced by Ser (hRegIV-P91S) and showed that the structural property and carbohydrate binding ability of hRegIV-P91S are almost identical with those of wild-type protein. The solution structure of hRegIV-P91S was determined, showing that it adopts a typical fold of C-type lectin. Based on the chemical shift perturbations of amide resonances, two calcium-independent mannan-binding sites were proposed. One site is similar to the calcium-independent sugar-binding site on human RegIII and Langerin. Interestingly, the other site is adjacent to the conserved calcium-dependent site at position Ca-2 of typical C-type lectins. Moreover, model-free analysis of 15N relaxation parameters and simplified Carr-Purcell-Meiboom-Gill relaxation dispersion experiments showed that a slow microsecond-to-millisecond time-scale backbone motion is involved in mannan binding by this site, suggesting a potential role for specific carbohydrate recognition. Our findings shed light on the sugar-binding mode of Reg family proteins, and we postulate that Reg family proteins evolved to bind sugar without calcium to keep the carbohydrate recognition activity under low-pH environments in the gastrointestinal tract.  相似文献   

7.
VIP36-like protein (VIPL) was identified as an endoplasmic reticulum (ER) resident protein with homology to VIP36, a cargo receptor involved in the transport of glycoproteins within cells. Although VIPL is structurally similar to VIP36, VIPL is thought not to be a lectin, because its sugar-binding activity has not been detected in several experiments. Here, recombinant soluble VIPL proteins (sVIPL) were expressed in Escherichia coli, biotinylated with biotin ligase and oligomerized with R-phycoerythrin (PE)-labeled streptavidin (SA). As measured with flow cytometry, PE-labeled sVIPL-SA bound to deoxymannojirimycin (DMJ)- or kifunensine (KIF)- but not to swainsonine (SW)-treated HeLaS3 cells in the presence of calcium. A surface plasmon resonance analysis showed that the avidity of sVIPL was enhanced after it formed a complex with SA. The binding of PE-labeled sVIPL-SA was abrogated by endo beta-N-acetylglucosaminidase H treatment of the DMJ- or KIF-treated cells. Competition with several high-mannose-type N-glycans inhibited VIPL binding, and indicated that VIPL recognizes the Manalpha1-2Manalpha1-2Man sequence. Glucosylation of the outer mannose residue of this portion decreased the binding. Although the biochemical characteristics of VIPL are similar to those of VIP36, the sugar-binding activity of VIPL was stronger at neutral pH, corresponding to the pH in the lumen of the ER, than under acidic conditions.  相似文献   

8.
Carbohydrate-binding components were shown to be present at the surface of Listeria monocytogenes by means of a panel of neoglycoproteins using direct agglutination. These lectin-like components bind on neoglycoproteins bearing D-glucosamine, L-fucosylamine, or para-amino-phenyl-alpha-D-mannopyrannoside residues. The interactions were inhibited by the carbohydrate moieties specific to the neoglycoproteins. The protein nature of the lectin-like components of L. monocytogenes was ascertained by the loss of carbohydrate-binding capacity following protease treatment.  相似文献   

9.
Carbohydrate-binding components were shown to be present at the surface of Listeria monocytogenes by means of a panel of neoglycoproteins using direct agglutination. These lectin-like components bind on neoglycoproteins bearing d -glucosamine, l -fucosylamine, or para-amino-phenyl-α- d -mannopyrannoside residues. The interactions were inhibited by the carbohydrate moieties specific to the neoglycoproteins. The protein nature of the lectin-like components of L. monocytogenes was ascertained by the loss of carbohydratebinding capacity following protease treatment.  相似文献   

10.
CD69 is a widely expressed type II transmembrane glycoprotein related to the C-type animal lectins that exhibits regulated expression on a variety of cells of the hematopoietic lineage, including neutrophils, monocytes, T cells, B cells, natural killer (NK) cells, and platelets. Activation of T lymphocytes results in the induced expression of CD69 at the cell surface. In addition, cross-linking of CD69 by specific antibodies leads to the activation of cells bearing this receptor and to the induction of effector functions. However, the physiological ligand of CD69 is unknown. We report here the X-ray crystal structure of the extracellular C-type lectin-like domain (CTLD) of human CD69 at 2.27 A resolution. Recombinant CD69 was expressed in bacterial inclusion bodies and folded in vitro. The protein, which exists as a disulfide-linked homodimer on the cell surface, crystallizes as a symmetrical dimer, similar to those formed by the related NK cell receptors Ly49A and CD94. The structure reveals conservation of the C-type lectin-like fold, including preservation of the two alpha-helical regions found in Ly49A and mannose-binding protein (MBP). However, only one of the nine residues coordinated to Ca(2+) in MBP is conserved in CD69 and no bound Ca(2+) is evident in the crystal structure. Surprisingly, electron density suggestive of a puckered six-membered ring was discovered at a site structurally analogous to the ligand-binding sites of MBP and Ly49A. This sugar-like density may represent, or mimic, part of the natural ligand recognized by CD69.  相似文献   

11.
Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell-cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.  相似文献   

12.
Presence of lectin-like receptors on the membranes of human monocytic leukemia cell line THP-1 cells for clustered sialylated poly-N-acetyllactosaminyl sugar chains on the membranes of oxidized erythrocytes and T-lympoid cells was investigated. Membranes of THP-1 cells differentiated into macrophages were solubilized, and the membrane proteins obtained by affinity chromatographies using lactoferrin-Sepharose and band 3-Sepharose were purified by successive DE column chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Proteins of 50, 60, and 80 kDa with specificity to bind to sialylated poly-N-acetyllactosaminyl sugar chains were detected in the chromatographic fractions. A 50-kDa protein was isolated in a pure form. N-Terminal amino acid sequence of the protein was Lys-Gln-Lys-Val-Ala-Gly-Lys-Gln-Pro-Val-, which has not been found in the N-terminal regions of the hitherto known proteins. The antibody, raised against the chemially synthesized peptide composed of the N-terminal amino acid sequence, bound to 50-, 60-, and 80-kDa proteins as analyzed by immunoblotting and immunoprecipitation, indicating that these proteins had the same N-terminal amino acid sequence. The results demonstrate that THP-1 cells have novel 50-, 60-, and 80-kDa lectin-like proteins with the same N-terminal amino acid sequence on the cell surface which would bind to clustered sialylated poly-N-acetyllactosaminyl sugar chains generated on oxidized erythrocytes and T-lymphoid cells.  相似文献   

13.
BACKGROUND: Natural killer (NK) cells mediate cytotoxicity through cell-surface receptors including lectin-like receptors. We have investigated whether sialyl Lewis X (sLe(X)) antigen, Neu5Acalpha2,3Galbeta1,4(Fucalpha1,3) GlcNAc-R, can bind to the lectin-like receptors on human NK-derived KHYG cells, using transferrin secreted by human hepatoma-derived HepG2 cells (Hep-TF), whose N-glycans are rich in alpha1,3-fucosylated bi-, tri-, and tetra-antennary type complexes, and commercially available human transferrin (Nor-TF), which is comprised of bi-antennary N-glycans without alpha1,3-fucosylation. RESULTS: High sLeX-expressing erythroleukemia-derived K562 cells isolated from fucosyltransferase-3-transfected cells were 2.5-fold more susceptible than wild-type K562 cells to KHYG cells. Fluorescein isothiocyanate (FITC)-labeled Hep-TF bound 1.8-fold more strongly to KHYG cells than did FITC-labeled Nor-TF; the binding was suppressed by treatment with anti-NKG2D, anti-NKG2C, anti-CD94 and anti-CD161 antibodies. FITC-labeled Hep-TF bound more strongly to human monocyte-derived U937 cells transfected with NKG2D and CD94 than to wild-type U937 cells. Moreover, tyrosine phosphorylation of a 17-kDa protein in the KHYG cells was enhanced by incubation on a Hep-TF coated plate and treatment with an anti-NKG2D antibody, but not by a Nor-TF coated plate and an anti-CD94 antibody. CONCLUSION: The interaction of sLe(X) antigen with lectin-like receptors on NK cells induces cytotoxicity that is mediated through a tyrosine-phosphorylated 17-kDa protein.  相似文献   

14.
L A Luck  J J Falke 《Biochemistry》1991,30(17):4248-4256
The Escherichia coli D-galactose and D-glucose receptor is an aqueous sugar-binding protein and the first component in the distinct chemosensory and transport pathways for these sugars. Activation of the receptor occurs when the sugar binds and induces a conformational change, which in turn enables docking to specific membrane proteins. Only the structure of the activated receptor containing bound D-glucose is known. To investigate the sugar-induced structural change, we have used 19F NMR to probe 12 sites widely distributed in the receptor molecule. Five sites are tryptophan positions probed by incorporation of 5-fluorotryptophan; the resulting 19F NMR resonances were assigned by site-directed mutagenesis. The other seven sites are phenylalanine positions probed by incorporation of 3-fluorophenylalanine. Sugar binding to the substrate binding cleft was observed to trigger a global structural change detected via 19F NMR frequency shifts at 10 of the 12 labeled sites. Two of the altered sites lie in the substrate binding cleft in van der Waals contact with the bound sugar molecule. The other eight altered sites, specifically two tryptophans and six phenylalanines distributed equally between the two receptor domains, are distant from the cleft and therefore experience allosteric structural changes upon sugar binding. The results are consistent with a model in which multiple secondary structural elements, known to extend between the substrate cleft and the protein surface, undergo shifts in their average positions upon sugar binding to the cleft. Such structural coupling provides a mechanism by which sugar binding to the substrate cleft can cause structural changes at one or more docking sites on the receptor surface.  相似文献   

15.
The crystal structure of a Thermoactinomyces vulgaris cyclo/maltodextrin-binding protein (TvuCMBP) complexed with gamma-cyclodextrin has been determined. Like Escherichia coli maltodextrin-binding protein (EcoMBP) and other bacterial sugar-binding proteins, TvuCMBP consists of two domains, an N- and a C-domain, both of which are composed of a central beta-sheet surrounded by alpha-helices; the domains are joined by a hinge region containing three segments. gamma-Cyclodextrin is located at a cleft formed by the two domains. A common functional conformational change has been reported in this protein family, which involves switching from an open form to a sugar-transporter bindable form, designated a closed form. The TvuCMBP-gamma-cyclodextrin complex structurally resembles the closed form of EcoMBP, indicating that TvuCMBP complexed with gamma-cyclodextrin adopts the closed form. The fluorescence measurements also showed that the affinities of TvuCMBP for cyclodextrins were almost equal to those for maltooligosaccharides. Despite having similar folds, the sugar-binding site of the N-domain part of TvuCMBP and other bacterial sugar-binding proteins are strikingly different. In TvuCMBP, the side-chain of Leu59 protrudes from the N-domain part into the sugar-binding cleft and orients toward the central cavity of gamma-cyclodextrin, thus Leu59 appears to play the key role in binding. The cleft of the sugar-binding site of TvuCMBP is also wider than that of EcoMBP. These findings suggest that the sugar-binding site of the N-domain part and the wide cleft are critical in determining the specificity of TvuCMBP for gamma-cyclodextrin.  相似文献   

16.
ZG16p is a secretory protein that mediates condensation-sorting of pancreatic enzymes to the zymogen granule membrane in pancreatic acinar cells. ZG16p interacts with glycosaminoglycans and the binding is considered to be important for condensation-sorting of pancreatic enzymes. ZG16b/PAUF, a paralog of ZG16p, has recently been found to play a role in gene regulation and cancer metastasis. However, the detailed functions of ZG16p and ZG16b remain to be clarified. Here, in order to obtain insights into structure–function relationships, we conducted crystallographic studies of human ZG16p lectin as well as its paralog, ZG16b, and determined their crystal structures at 1.65 and 2.75 Å resolution, respectively. ZG16p has a Jacalin-related β-prism fold, the first to be reported among mammalian lectins. The putative sugar-binding site of ZG16p is occupied by a glycerol molecule, mimicking the mannose bound to Jacalin-related mannose-binding-type plant lectins such as Banlec. ZG16b also has a β-prism fold, but some amino acid residues of the putative sugar-binding site differ from those of the mannose-type binding site suggesting altered preference. A positively charged patch, which may bind sulfated groups of the glycosaminoglycans, is located around the putative sugar-binding site of ZG16p and ZG16b. Taken together, we suggest that the sugar-binding site and the adjacent basic patch of ZG16p and ZG16b cooperatively form a functional glycosaminoglycan-binding site.  相似文献   

17.
Using gold labelled neoglycoproteins containing either alpha-D-glucose, N-acetyl-beta-D-glucosamine, alpha-D-mannose, 6-phospho-alpha-D-mannose, and alpha-L-fucose (BSA), we investigated their intranuclear binding sites in the TG human cell line. Although gold-labelled BSA did not give any noticeable labelling, the presence of 1% free BSA in the medium containing the gold labelled neoglycoproteins was revealed to be a key factor of the labelling. During interphase in the presence of free BSA most of the labelling was detected in the nucleoplasm. The border of the condensed chromatin, known to be the site of hnRNA synthesis as well as the interchromatin areas enriched in RNPs were labelled. Condensed chromatin also contained binding-sites. The nucleolus was seen to present low labelling in comparison with the labelling observed over the nucleoplasm. These nucleolar binding sites were located both in the dense fibrillar and granular components. No labelling could be detected over the fibrillar centers which are very conspicuous in this cell line. During mitosis sugar-binding sites were observed over the chromosomes. Data reported here show for the first time that lectin-like proteins and chromatin components are colocalized both during interphase and mitosis. In addition, within the nucleolus the presence of sugar-binding proteins was seen to be restricted to the dense fibrillar and granular components.  相似文献   

18.
A sugar-binding protein, or endogenous lectin, was localized on fixed and paraffin-embedded thyroid sections by means of fluorescein-labelled neoglycoproteins. Fluorescence microscopy showed the binding of this lectin to be dependent on calcium ions and acidic pH and indicated sugar specificity for GlcNAc moieties only. In human, porcine and murine thyrocytes, specific binding was observed mainly on subcellular organelles. Conversely, in rabbit thyrocytes, specific labelling was seen mostly at the apical cell surface facing the follicular lumen. The possibility that this novel endogenous lectin is involved in the Tg metabolism is considered.  相似文献   

19.
The C-terminal module of the thermostable Thermotoga maritima xylanase 10A (CBM9-2) is a family 9 carbohydrate-binding module that binds to amorphous and crystalline cellulose and a range of soluble di- and monosaccharides as well as to cello and xylo oligomers of different degrees of polymerization [Boraston, A. B., Creagh, A. L., Alam, Md. M., Kormos, J. M., Tomme, P., Haynes, C. A., Warren, R. A. J., and Kilburn, D. G. (2001) Biochemistry 40, 6240-6247]. The crystal structure of CBM9-2 has been determined by the multiwavelength anomalous dispersion method to 1.9 A resolution. CBM9-2 assumes a beta-sandwich fold and contains three metal binding sites. The bound metal atoms, which are most likely calcium cations, are in an octahedral coordination. The crystal structures of CBM9-2 in complex with glucose and cellobiose were also determined in order to identify the sugar-binding site and provide insight into the structural basis for sugar binding by CBM9-2. The sugar-binding site is a solvent-exposed slot sufficient in depth, width, and length to accommodate a disaccharide. Two tryptophan residues are stacked together on the surface of the protein forming the sugar-binding site. From the complex structures with glucose and cellobiose, it was inferred that CBM9-2 binds exclusively to the reducing end of mono-, di-, and oligosaccharides with an intricate hydrogen-bonding network involving mainly charged residues, as well as stacking interactions by Trp175 and Trp71. The binding interactions are limited to disaccharides as was expected from calorimetric data. Comparison of the glucose and cellobiose complexes revealed surprising differences in binding of these two substrates by CBM9-2. Cellobiose was found to bind in a distinct orientation from glucose, while still maintaining optimal stacking and electrostatic interactions with the reducing end sugar.  相似文献   

20.
Poget SF  Freund SM  Howard MJ  Bycroft M 《Biochemistry》2001,40(37):10966-10972
C-type lectin-like domains are very common components of extracellular proteins in animals. They bind to a variety of ligands, including carbohydrates, proteins, ice, and CaCO3 crystals. Their structure is characterized by long surface loops in the area of the protein usually involved in ligand binding. The C-type lectin TC14 from Polyandrocarpa misakiensis specifically binds to D-galactose by coordination of the sugar to a bound calcium atom. We have studied the dynamic properties of TC14 by measuring 15N longitudinal and transverse relaxation rates as well as [1H-15N] heteronuclear NOEs. Relaxation rates and heteronuclear NOE data for holo-TC14 show minimal variations, indicating that there is no substantial difference in rigidity between the elements of regular secondary structure and the extended surface loops. Anisotropic tumbling of the elongated TC14 dimer can account for the main fluctuations in relaxation rates. Loss of the bound calcium does not significantly alter the internal dynamics, suggesting that the stability of the loop region is intrinsic and not dependent on the coordination of the calcium ion. Chemical shift differences between the holo and apo form show that main structural changes occur in the calcium-binding site, but smaller structural changes are propagated throughout the molecule without affecting the overall fold. The disappearance of two resonances for residues following the conserved cis-proline 87 (which is located in the calcium-binding site) in the apo form indicates conformational change on an NMR time scale between the cis and trans configurations of this peptide bond in the absence of calcium. Possible implications of these findings for the ligand binding in C-type lectin-like domains are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号