首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
螺环季铵盐电解质在超级电容器中的应用研究   总被引:1,自引:0,他引:1  
采用一种新型的四氟硼酸螺环季铵盐/丙腈非水溶液作超级电容器的电解液,与活性炭电极组装成模拟超级电容器,通过交流阻抗、循环伏安及恒流充放电等测试手段对其电化学性能进行了研究。结果表明,超级电容器电化学窗口可以达到4.7V,电容器的单正极比电容可达到469.94F/cm3,并且具有良好的电容特性、可逆性及循环特性。  相似文献   

2.
丁石谷  蔡荣海  张鹏 《电气传动》2021,51(21):66-71
车载使用工况下,超级电容器性能参数的变化不同于常规室温下的变化规律.为了研究超级电容器性能参数在电动汽车实际应用过程中的变化规律,首先设计了不同的实验方法模拟车载超级电容使用的不同情形,获取了相应的结果.进一步,基于实验测量的结果得出超级电容器在不同行驶工况下的性能参数值.据此,仿真分析了车载超级电容器组性能参数的变化对其自身动态特性的影响.  相似文献   

3.
利用电射流沉积技术,以石墨烯/聚苯胺复合材料为电极活性材料,制备成超级电容器。用原位聚合法得到石墨烯/聚苯胺的复合材料,制备成分散均匀的悬浮液,利用电射流沉积装置在碳纸上沉积电极,将电极和凝胶电解质(PVA-H_2SO_4)基于三明治结构组装成超级电容器。测试其电化学性能,电射流沉积法制备的超级电容器在500 m A/g的电流密度下比电容达到228 F/g,经过1 000次循环充放电后容量保留92%,比传统涂覆方法分别提高了11%和7%。研究结果表明,电射流沉积技术是制备超级电容纳米复合电极的理想方法。  相似文献   

4.
超级电容器用复合炭极板电极的电化学性能   总被引:9,自引:0,他引:9  
用高比表面积活性炭作为原料,酚醛树脂为粘结剂,在高温下粘结成型制备系列超级电容器用固体活性炭极板。采用直流恒流循环法和低温N2吸附对超级电容器电极进行充放电和孔结构分布测试,考察其电化学性能和结构的关系。实验发现,在不同组成的成型活性炭电极中,微孔活性炭含量大,则比电容高,炭化时温度高于800 ℃复合活性炭电极比电容下降。成型活性炭炭化后比表面积降低,微孔孔结构分布变宽,孔容在2~3 nm左右的分布明显加宽。  相似文献   

5.
张刚  凤睿  钱陆明  卢海 《电池》2021,51(2):118-121
考察己二腈(ADN)、γ-丁内酯(GBL)和碳酸丙烯酯(PC)分别用作电解液1 mol/L SBPBF4/AN的共溶剂(共溶剂质量分数为10%),对活性炭基超级电容器电化学性能的影响.使用不同共溶剂调制的电解液的超级电容器,均能在0~3.00 V的电压窗口内正常工作,但使用GBL的电解液抗氧化性不强,制备的超级电容器循环稳定性与功率特性较差.使用PC的电解液耐氧化能力较好,制备的超级电容器以1 A/g的电流在0~3.00 V循环4 900次后的电容保持率高达95.1%(基于化成后的电容计算),比能量与比功率分别可达35.1 Wh/kg和8 130 W/kg.ADN作为共溶剂虽然黏度较高,制备的超级电容器经耐压测试内阻偏大,但是循环与倍率性能与使用PC共溶剂时相近.  相似文献   

6.
为了克服超级电容传统充电策略充电时间与电容满充之间的矛盾,提出一种基于超级电容内阻补偿的恒流充电方法,该充电方式能够通过恒流充电达到传统恒流-恒压充电方式的满充效果,同时大大减少充电时间。首先分析了超级电容器充电轨迹优化的原理,然后通过实验对可行性与有效性进行验证,最后进一步采用Matlab仿真分析了不同条件下超级电容器的充电性能。研究结果表明:该方法可在基本不降低充电效率(0.2%)的前提下有效减少超级电容器的充电时间(23.5%)。  相似文献   

7.
活性炭在不对称超级电容器中的电化学行为   总被引:2,自引:0,他引:2  
主要研究活性炭(AC)作为不对称超级电容器的负极在低电位下的电化学行为.通过循环伏安实验,探讨了有机电解液中活性炭电极在低电位下可能发生的电化学反应,指出了活性炭应用于不对称超级电容器中的电位变化区间在4~0.8 V(vs.Li /Li).当活性炭负极电位低于0.8 V时,因为Li 的还原使活性炭比电容下降;通过恒流充放电实验,计算了活性炭电极在不同电位范围内的电容器性能参数,活性炭负极充电截止电位在0.8 V时,比电容达到117.8 F/g,不对称超级电容器的比能量达到55.2 Wh/kg,同时库仑效率达到92.8%.  相似文献   

8.
随着超级电容器应用的推广,对于其性能的要求也越来越高,亟需加强对其性能的深入研究。和电池的测试方法相似,超级电容器的测试同样可以使用恒压测试、恒流测试两种方法。出于测试结果直观的考虑,一般选用恒流充放电测试法来测试超级电容器。由于超级电容器的充放电过程非常快,对数字处理模块的要求非常高,DSP(TMS3210C2812)的工作频率高,且其内置的模数转换器为系统的数据采集和正确显示提供保障。  相似文献   

9.
苏蓓 《电源技术》2022,46(2):173-176
分别以普通铝箔、腐蚀铝箔和微孔铝箔为集流体,以活性炭材料为电极片活性物质,研究不同的浆料涂布厚度及集流体种类对单体超级电容器内阻、比电容和比能量的影响。用交流阻抗谱、恒流充放电和循环伏安测试等进行电化学性能表征。实验结果表明,电极片的涂布厚度相同时,微孔铝箔的活性物质负载量最大,并且其内阻最小、比电容最大,说明微孔铝箔与活性物质表面的接触更为紧密;而对于同一种集流体,当涂布厚度为90μm时,组装的超级电容器的比电容最大。  相似文献   

10.
以蒲草绒为生物质碳源制备了具有高比表面积的多孔碳材料,其在超级电容器以及钠离子电池方面得到了较好的应用,并研究了不同活化比例对其电化学性能的影响。最佳比例条件下,0.5A/g的电流密度下,制备的碳材料在超级电容器中可以得到260F/g的比电容值,循环2500圈之后可以保持初始容量的92.7%;而在其作为钠离子电池负极的应用上,0.05A/g的电流密度下,其比容量可达245mAh/g;在大倍率(10A/g)下,其比电容仍然高达87mAh/g,在1A/g循环1000圈之后,其容量衰减仅衰减了16.4%,在5A/g循环1000圈仅衰减了11%,表现出了良好的电化学性能。  相似文献   

11.
PVDC基活性炭的制备与电容性能   总被引:1,自引:0,他引:1  
以聚偏二氯乙烯(PVDC)为原料、采用水蒸气活化制备超级电容器用活性炭电极材料.采用N2吸附法对材料的比表面和孔结构进行了研究,通过恒流充放电和循环伏安测试等方法研究了材料在6 mol/L KOH溶液中的电化学电容性能.结果表明,该方法在900℃下可制备出高比表面积(2 296 m2/g)、富含中孔(中孔率为42.7%)的活性炭材料,适合用作超级电容器的电极材料.在880℃下活化1h制备的活性炭,比电容为177 F/g (50 mA/g),大电流倍率性能良好.  相似文献   

12.
殷金玲  孟祥利  温青  张宝宏  徐宇虹 《电池》2006,36(4):288-290
采用内聚合法制备PAN基凝胶聚合物电解质超级电容器。采用交流阻抗、循环伏安、恒流充放电等测试方法对超级电容器的性能进行了测试。结果表明:凝胶聚合物电解质的电导率较高,其中10%丙烯腈 1 mol/L LiClO4/EMC EC(质量比1∶1)电解质的室温电导率达到9.34 mS/cm,且由其组成的电容器比电容达24.29 F/g(0.5 mA/cm2);10%丙烯腈 1 mol/L LiClO4/PC EC(质量比1∶1)电解质电容器比电容为20.57 F/g(0.5 mA/cm2),200次循环后比电容下降11.75%(2.0 mA/cm2)。  相似文献   

13.
任炼文  熊佳 《电池工业》2006,11(4):237-240,247
超级电容器是一种介于传统静电电容器和化学电源之间的新型储能元件,它具有比静电电容器高的容量。和电池相比,它具有较高的功率密度。恒流充放电实验证明使用该材料制备的电容器具有良好的大电流充放电性能以及较长的循环寿命,是一种具有发展潜力的超级电容器。介绍了超级电容器在纯电容公交车上作为主要驱动能源使用的情况。  相似文献   

14.
苎麻基活性炭纤维超级电容器材料的制备   总被引:3,自引:0,他引:3  
以天然植物纤维苎麻为原料.采用ZnCl_2化学活化法,制备不同活化温度下的活性炭纤维,并组装成超级电容器,通过低温氮气吸附测定了活性炭纤维的BET比表面积和孔结构,发现比表面积随活化温度的升高而减小.电化学测试结果表明经过650℃活化的活性炭纤维超级电容器在50 mA/g恒流放电时比电容达253 F/g,并且具有较低的内阻和较好的功率特性以及较长的循环寿命.  相似文献   

15.
为适应电化学双电层电容器(EDLC)的发展和对所用活性炭评价的需求,采用恒流充放电、循环伏安和交流阻抗等电化学测试技术,全面考察了电极片组分、压制压力、厚度、EDLC装配压力、电解液浓度、EDLC静置时间以及测试温度等一系列条件对活性炭电容性能测试值的影响,从大量的实验得到了规律性的结果。介绍了研究影响粉状活性炭电容性能测定值的因素得到的相关结果,得出了粉状活性炭的比电容较适合的测试条件。  相似文献   

16.
制备变电站超级电容器的正极为活性炭,负极为预嵌锂石墨,通过恒流充放电、交流阻抗谱、循环伏安等方法对所制备电容器的电化学性能进行测试。通过与传统双电层电容器相比较可发现,制备的超级电容器所具备的电化学性能较好,其工作电压从2.2 V升至3.8 V,且能量为传统双电层电容器的3.58倍;当以200 m A/g的电流在2.0~3.8 V下循环2 000次时,其放电电容的保持率可高达97.8%。  相似文献   

17.
金属氧化物超级电容器的研究进展   总被引:4,自引:2,他引:2  
杨惠  石兆辉  陈野  张密林 《电池》2005,35(6):477-479
与蓄电池相比,超级电容器具有较高的比功率;与传统电容器相比,超级电容器具有较大的容量和较高的能量,且工作温度范围宽、循环寿命长.金属氧化物超级电容器的储能以法拉第准电容为主,其电极材料分为三类:贵金属氧化物、贱金属氧化物和复合型金属氧化物.综述了金属氧化物超级电容器的储能机理、制备及最新研究进展;介绍了电容器中电解液、隔膜材料和集流体的相关性能.  相似文献   

18.
35 V混合超级电容器的性能研究   总被引:1,自引:0,他引:1  
景燕  李建玲  李文生  王新东 《电池》2007,37(2):137-138
以Al/Al2O3为阳极,活性炭为阴极,研制了一种电压为35 V、电容为50 μF、能量密度为0.326 J/cm3的混合超级电容器.恒流充放电测试结果表明:它具有快速充放电的能力,能量密度比47 μF铝电解电容器提高了约6倍.频谱阻抗分析表明:频率特性曲线接近于理想超级电容器,具有良好的电容特性和频率特性.  相似文献   

19.
超级电容器是一类新型的电化学能量存储器,具有功率密度高、充放电速度快和寿命长等优势。探究碳基锂离子超级电容器负极预嵌锂方法,通过对以炭为主要原料的负极材料实施一系列处理工艺,可得到预嵌锂炭材料。通过对预嵌锂炭材料的物理性能、电化学性能以及电容性能的测试,证明了该预嵌锂方法可显著提高超级电容器的能量密度、功率密度和循环稳定性。此外,还探讨了该预嵌锂方法的机理,并对其可能的应用前景进行了展望,对碳基锂离子超级电容器的开发和应用具有重要的理论和实际意义。  相似文献   

20.
采用商用超级电容器活性炭,制备了双电层电容器,用循环伏安、交流阻抗和恒流充放电等表征方法研究了活性炭电极在不同中性电解液中的电化学性能。结果表明:活性炭的比电容依KOH、氯化物、硫酸盐、硝酸盐溶液顺序递减,依铵盐、钠盐、钾盐顺序递增;循环性能氯化物和硝酸盐溶液中较差,硫酸盐和KOH溶液中较好,硝酸盐不适合做超级电容器电解质,而(NH4)2SO4和KCl有望成为优良的电解质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号