首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
基于无人机多时相遥感影像的冬小麦产量估算   总被引:1,自引:0,他引:1  
为高效准确地预测小麦产量,以浙江省冬小麦为研究对象,利用四旋翼无人机精灵4多光谱相机获取冬小麦5个关键生育时期(拔节期、孕穗期、抽穗期、灌浆期、成熟期)的冠层多光谱数据,选取多光谱相机的五个特征波段计算各生育时期的72个植被指数,分别通过逐步多元线性回归(SMLR)、偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机(SVM)、随机森林(RF)构建不同生育时期的产量估算模型,最后采用决定系数(R)、均方根误差(RMSE)和相对误差(RE)对估算模型进行评价,筛选出最优估算模型。结果表明,基于随机森林建立的模型估算效果最优,SMLR、PLSR和SVM三种方法建立的模型估算效果接近。利用随机森林算法所建拔节期、孕穗期、抽穗期、灌浆期、成熟期模型的R、RMSE和RE分别为0.92、0.35、11%;0.93、0.33、10%;0.94、0.32、9%;0.92、0.36、9%;0.77、0.67、33%。模型验证时,抽穗期估算效果最好(R、RMSE和RE分别为0.91、0.35和15%),拔节期、孕穗期、灌浆期估算效果接近且有很好的估算能力,成熟期估算精度最差(R、RMSE和RE分别为0.71、0.47和13%)。由此说明,结合机器学习算法和无人机多光谱提取的植被指数可以提高小麦产量估算效果。  相似文献   

2.
不同生育时期冬小麦叶片相对含水量高光谱监测   总被引:2,自引:0,他引:2  
为实现冬小麦不同生育时期叶片水分含量的快速监测,以冬小麦冠层高光谱数据和红外热成像数据为基础,计算得到5种光谱参数,通过对不同生育时期叶片相对含水量与光谱参数拟合状况进行分析和筛选,分别构建了基于光谱参数的叶片相对含水量反演模型,并对模型进行检验。结果表明,不同生育时期叶片相对含水量与比值指数(RVI)、归一化差值植被指数(NDVI)、比值/归一化植被指数(R/ND)、优化土壤调整植被指数(OSAVI)、冠气温差(TDc-a)均呈极显著相关(P<0.01);拔节期、抽穗期、开花期、灌浆前期和灌浆后期叶片相对含水量分别与NDVI、OSAVI、R/ND、TDc-a和TDc-a拟合效果较好,决定系数分别为0.842、0.884、0.831、0.864和0.945;预测模型的均方根误差分别为0.019、0.016、0.027、0.032和0.024,相对误差分别为2.16%、1.80%、3.30%、3.81%和3.53%。因此,在拔节期、抽穗期、开花期、灌浆前期和灌浆后期,可以分别利用NDVI、OSAVI、R/ND、TDc-a和TDc-a估测冬小麦叶片相对含水量。  相似文献   

3.
为解决大田冬小麦叶片叶绿素含量估测模型精度低、通用性弱的问题,在获取冬小麦拔节期和抽穗期冠层红光波段反射率(BRred)和近红外波段反射率(BRnir)的基础上,计算归一化差值植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)、土壤调节植被指数(SAVI)、改进型比值植被指数(MSR)、重归一化植被指数(RDVI)、II型增强植被指数(EVI2)和非线性植被指数(NLI)等8个植被指数。经统计分析,选择与叶片叶绿素含量(SPAD值)相关性较好的5个遥感光谱指标(NDVI、MSR、NLI、BRred和RVI)作为输入变量,建立了冬小麦叶片叶绿素含量的BP神经网络估测模型(WWLCCBP),并对估测模型进行精度验证。结果表明,WWLCCBP估测模型在拔节期估测的决定系数(r2)为0.84,均方根误差(RMSE)为5.39,平均相对误差(ARE)为9.87%。抽穗期的估测效果与拔节期较为一致。将WWLCCBP和高分六号影像...  相似文献   

4.
基于无人机多光谱遥感的冬小麦冠层叶绿素含量估测研究   总被引:6,自引:0,他引:6  
为探讨利用无人机多光谱影像监测冬小麦叶绿素含量的可行性,基于北京市大兴区中国水科院试验基地的2019年冬小麦无人机多光谱影像和田间实测冠层叶绿素含量数据,选取16种光谱植被指数,确定对冬小麦冠层叶绿素含量显著相关的植被指数,采用一元二次线性回归和逐步回归分析方法建立各生育时期及全生育期的SPAD值估测模型,通过精度检验确定对冬小麦冠层叶绿素含量监测的最优模型。结果表明,两种分析方法中逐步回归建模效果最佳。拔节期选取4个植被指数(MSR、CARI、NGBDI、TVI)建模效果最好,模型率定的决定系数(r~2)为0.73,模型验证的r~2、相对误差(RE)和均方根误差(RMSE)分别为0.63、2.83%、1.68;抽穗期选取3个植被指数(GNDVI、GOSAVI、CARI)建模效果最好,模型率定的r~2为0.81,模型验证的r~2、RE、RMSE分别为0.63、2.83%、1.68;灌浆期选取2个植被指数(MSR、NGBDI)建模效果最好,模型率定的r~2为0.67,模型验证的r~2、RE、RMSE分别为0.65、2.83%、1.88。因此,无人机多光谱影像结合逐步回归模型可以很好地监测冬小麦SPAD值动态变化。  相似文献   

5.
为实现冬小麦不同生育时期地上部生物量的高光谱监测,2017-2019年分别在河南省鹤壁市、原阳县和温县布置冬小麦氮肥梯度田间试验,分别于分蘖期、拔节期、抽穗期和灌浆期测定冬小麦地上部生物量及其冠层原位高光谱反射率(400~950 nm),并采用Pearson相关分析明确两者间定量回归关系,再分别利用支持向量机(support vector machine, SVM)和偏最小二乘回归(partial least square, PLS)建立预测模型并进行精度验证,以确定最优光谱监测时期和有效波段。结果表明,冬小麦地上部生物量与冠层高光谱反射率在可见光区(400~715 nm)呈负相关,在近红外区(715~950 nm)呈正相关,且相关性表现为分蘖期<拔节期<灌浆期≤抽穗期。生育时期间模型精度差异较大,抽穗期效果最优,SVM和PLS模型的验证决定系数分别为0.877和0.859,相对分析误差分别为2.429和2.340;灌浆期次之,决定系数分别为0.835和0.830,相对分析误差分别为2.416和1.814;分蘖期最低,决定系数分别为0.693和0.750,相对分析误差分别为1.063和0.894。同时,冬小麦地上部生物量有效波段在生育时期间具有明显的异同性,分蘖期时有效波段在可见光-近红外区均有明显的均衡分布,至拔节期时产生明显的短波“蓝移”现象,抽穗期“蓝移”现象更显著,而至灌浆期则表现出明显的长波“红移”特征。此后,再次构建基于有效波段的冬小麦不同生育时期地上部生物量SVM和PLS监测模型,决定系数和相对分析误差分别高于0.72和1.40,预测精度较理想,能够满足无损和精准监测需求。  相似文献   

6.
为探索基于全波段冠层高光谱以及变换光谱的冬小麦地上部生物量的遥感估算方法,以2016、2017年冬小麦田间试验为基础,通过对冠层光谱和地上部生物量的相关性分析,筛选拔节期、抽穗期的冬小麦冠层光谱、一阶导数光谱、对数变换光谱和连续统去除光谱对地上部生物量的敏感波段,并结合偏最小二乘法(PLS)分别建立拔节期和抽穗期基于SPA算法的冬小麦地上部生物量估测模型,再与基于任意两波段组合的最佳归一化光谱指数、比值光谱指数、差值光谱指数和已报道光谱指数的冬小麦地上部生物量估测模型进行比较。结果表明:(1)SPA算法较好地利用了全波段冠层光谱信息,并显著降低了光谱维度,不同变换光谱的地上部生物量敏感波段个数在4~14之间;(2)拔节期和抽穗期冠层光谱与地上部生物量的相关性高于开花期和灌浆期,各生育时期一阶导数光谱与地上部生物量之间的相关性优于连续统去除光谱、对数变换光谱和光谱指数;(3) 利用抽穗期一阶导数光谱敏感波段建立的预测模型和验证模型达到了较高的精度,其预测模型的决定系数和均方根误差分别为0.78和0.87 t·hm-2,验证模型的决定系数和均方根误差分别为 0.84和0.69 t·hm-2,预测相对偏差为2.74。这说明,抽穗期是估算地上部生物量的最佳生育时期,且基于冠层一阶导数变换光谱,结合连续投影算法和偏最小二乘回归方法所构建抽穗期地上部生物量估算模型具有最优的精度和预测能力,可用于地上部生物量的定量估算。  相似文献   

7.
县域冬小麦生物量动态变化遥感估测研究   总被引:1,自引:0,他引:1  
为给生产管理中及时掌握县域冬小麦长势的动态变化提供有效手段,以江苏省沭阳县为研究区,基于冬小麦生物量形成的生理生态过程,重构冬小麦生物量遥感估测模型。选用两景不同时相的HJ星影像数据,利用植被指数反演的LAI数据,对冬小麦生物量模型进行参数修订,并对县域冬小麦拔节期生物量的空间分布进行估测。在此基础上,进一步估测冬小麦抽穗期生物量分布特征及其动态变化特点。结果表明:(1)冬小麦拔节期生物量估测值和观测值范围分别为2 054.3~4 828.3 和1 962.5~4 568.4 kg·hm-2 ,平均值分别为3 148和3 045.5 kg·hm-2 ,RMSE为214.8 kg·hm-2 ,决定系数为0.919 1,表明冬小麦生物量模型模拟精度较好;(2)冬小麦抽穗期生物量较拔节期发生明显变化,其中长势变化快的田块面积为20 108.7hm,占总种植面积的23.4%。春季气候因素的转好以及肥水措施的实施对冬小麦营养与生殖共生阶段的生长起到明显促进作用。说明本研究提出的基于遥感反演信息与生长模型协同的冬小麦生物量估测方法能有效估测县域冬小麦不同生长时期生物量的空间分布及其动态变化。  相似文献   

8.
为探讨基于神经网络对小麦地上部生物量(aboveground biomass,AGB)进行遥感估测的可行性,在江苏省泰州泰兴市、盐城大丰区和宿迁沭阳县布设冬小麦大田试验,在对冬小麦近红外波段反射率(near-infrared band reflectance,REFnir)、红光波段反射率(red band reflectance,REFred)、归一化差值植被指数(normalized difference vegetation index,NDVI)、差值植被指数(difference vegetation index,DVI)、比值植被指数(ratio vegetation index,RVI)、土壤调节植被指数(soil adjusted vegetation index,SAVI)和优化土壤调节植被指数(optimized soil adjusted vegetation index,OSAVI)等7个遥感光谱指标与冬小麦生长指标(LAI和AGB)进行相关性分析基础上,构建基于BP神经网络的冬小麦AGB估测模型,并与多元线性回归估测模型进行精度比较。结果表明,冬小麦拔节期REFred、NDVI、RVI、SAVI、OSAVI和LAI与AGB之间存在较好相关性,其中LAI与AGB的相关性最高(相关系数为0.782),SAVI与AGB的相关性最低(相关系数为0.647)。利用BP神经网络建立的冬小麦AGB估测模型AGBBP的决定系数(r)为0.918,均方根误差(root mean square error,RMSE)为582.9 kg·hm-2,平均相对误差(average relative error,ARE)为18.4%。利用多元线性回归分析建立的冬小麦AGB估测模型AGBRAr为0.784,RMSE为871.1 kg·hm-2, ARE为32.6%。利用冬小麦抽穗期AGB实测数据再对模型AGBBP和AGBRA进行验证,其RMSE分别为1 140.4和1 676.7 kg·hm-2, ARE分别为20.5%和33.1%。由此可以看出,冬小麦估测模型AGBBP精度优于模型AGBRA,说明利用多个遥感光谱指标结合LAI建模可以有效提高冬小麦AGB的估测精度。  相似文献   

9.
基于生态因子的冬小麦产量遥感估测研究   总被引:3,自引:0,他引:3  
为提高冬小麦遥感估产的精确性与适用性,在河南省的孟州市和沁阳市利用GPS定位布设田间试验,利用P-6卫星数据进行了冬小麦遥感估产研究.通过对遥感植被指数和冬小麦长势与产量GPS定位数据的综合分析,基于遥感影像信息获取的瞬时性和准确性,结合小麦灌浆期生态条件对小麦产量形成的影响,利用开花期遥感影像归一化植被指数(NDVI)和灌浆期生态因子(气温、日照、氮素营养、土壤水分)建立了冬小麦产量遥感估测模型,并检验了该模型的可靠性.结果表明,模型预测值与实测值较为一致,利用开花期遥感影像NDVI和灌浆期生态数据估测冬小麦产量的RMSE值为369.27 kg·ha-1,相对误差为6.45%.模型估测性能好,且具有一定的解释性.  相似文献   

10.
高温胁迫下水稻产量的高光谱估测研究   总被引:2,自引:0,他引:2  
为了定量分析不同生育期冠层反射光谱参数与水稻产量及产量构成要素的相互关系,确定能够准确预测高温胁迫下水稻籽粒产量的敏感光谱参数,通过盆栽试验,测定了孕穗期4种温度胁迫处理后的2个水稻品种不同生育期冠层高光谱反射率以及成熟后的理论产量、实际产量、穗数、每穗粒数、千粒重、穗长、穗干质量和结实率。结果表明,相对于蜡熟期的光谱参数,抽穗期和灌浆期的光谱参数与理论产量、实际产量、穗数、每穗粒数、千粒重、穗长、穗干质量以及结实率的相关性都较高,均达到显著水平。此两个时期可以作为预测水稻产量的关键时期。其中,差值植被指数DVI[810,A(450,560,680)]、垂直植被指数PVI(810,680)、红边幅值Dλred和红边峰值面积可以同时预测成熟水稻的理论产量和实际产量。而差值植被指数DVI(810,450)和DVI(810,560)、垂直植被指数PVI(810,680)和Dλred可以同时预测成熟水稻的穗数、每穗粒数和千粒重。相对于灌浆期的模型,抽穗期的模型能较可靠地监测水稻产量。  相似文献   

11.
为及时、准确地掌握小麦产量动态信息,基于无人机遥感平台,分别分析了小麦4项生理指标[地面实测叶面积指数、叶片含氮量、叶片含水量及叶片叶绿素相对含量(SPAD值)]及10项植被指数与产量的相关性,以筛选出与产量最为敏感的生理指标与植被指数,并比较了3种建模方法(一元回归UR、多元逐步回归SMLR和主成分回归PCAR)在小麦各生育时期估产的适用性,进而得到小麦最优估产模型。结果表明:(1)不同生育时期两类变量与产量的相关性变化特征一致,均表现为抽穗期>灌浆期>成熟期;不同生理指标、植被指数与产量的相关性在各生育时期均存在差异,生理指标表现为叶片含氮量>LAI>SPAD>叶片含水量;而植被指数在各时期表现不同;(2)以生理指标与植被指数为自变量,采用SMLR模型构建的抽穗期估产模型拟合精度最高,R、RMSE和nRMSE分别为0.828、362.53 kg·hm-2和12.35%;(3)小麦估产模型在各生育时期的预测精度表现为抽穗期>灌浆期>成熟期。  相似文献   

12.
为探讨生物炭与灌水对春小麦产量和品质的综合效应,以北疆灌区春小麦为研究对象,通过随机区组试验,设置3个灌水量[4 500 m3·hm-2(W0)、4 050 m3·hm-2(W1)和3 600 m3·hm-2(W2)]和3个生物炭施用量[0 t·hm-2(B0)、10 t·hm-2(B1)和20 t·hm-2(B2)]水平,比较分析了不同生物炭用量与灌水量组合条件下春小麦干物质累积、产量和籽粒蛋白质含量等品质指标的差异,并运用基于熵值的DTOPSIS法进行综合效应评价。结果表明,不同灌水量条件下施用生物炭对春小麦干物质累积量影响均不显著,但可提升籽粒品质,灌水量和生物炭的交互作用对春小麦籽粒品质与产量的影响显著。在W0条件下春小麦籽粒蛋白含量随生物炭用量增加呈先升高后降低趋势,且所有施加生物炭处理的籽粒蛋白质含量均低于B0W0处理;W1条件下施加生物炭处理的籽粒蛋白质含量变化趋势与W0条件下...  相似文献   

13.
限水减氮对高产麦田群体动态和产量形成的影响   总被引:1,自引:0,他引:1  
为解决河北省水资源匮乏和麦田施氮量偏多问题,于2013~(-2)014和2014~(-2)015年度,在河北省石家庄市藁城区分别设置限水灌溉的单因素试验和限水减氮的二因素裂区试验,研究了限水减氮对河北省高产麦田群体动态和产量的影响。结果表明,在2013~(-2)014年度,限水灌溉处理(拔节期45mm、开花期30mm、灌浆期30mm,春季总灌水量105mm)与节水灌溉对照(拔节期60mm、开花期60mm,春季总灌水量120mm)间小麦叶面积指数、光能截获率、生物产量、穗数和穗粒数差异均不显著;限水灌溉的千粒重显著增加,籽粒产量为10 081.08kg·hm~(-2),水分利用效率为27.98kg·hm~(-2)·mm-1。在2014~(-2)015年度,限水灌溉处理中W3处理(拔节期37.5mm、开花期15mm、灌浆期15mm,春季总灌水量67.5mm)的叶面积指数、光能截获率与节水灌溉对照(拔节期67.5mm、开花期67.5mm,春季总灌水量135mm)无显著差异,穗数和穗粒数有所降低,但千粒重显著增加,籽粒产量8 903.70kg·hm~(-2),比节水灌溉对照减产7.95%,生物产量降低7.15%,但水分利用效率和灌水利用效率分别提高9.28%和84.10%,且未显著增加0~140cm和0~200cm土层贮水的消耗,是本试验条件下保证高产高效的最佳限水灌溉模式。120、180和240kg·hm~(-2)的3个施氮水平间各指标差异均不显著。综合节水高产和减氮增效的现状,以小麦拔节期灌水37.5mm、开花期15mm、灌浆期15mm的灌溉模式结合生育期施N 120kg·hm~(-2)为本试验条件下的最优限水减氮组合。  相似文献   

14.
为探讨遥感信息和作物生长模型在作物估产方面的优势互补特性,选取河北省藁城市冬小麦作为研究对象,采集多个关键生育时期的生理生化、农田环境、气象等数据,并获取准同步的环境减灾小卫星HJ-CCD影像数据,采用植被指数反演冬小麦叶面积指数(LAI),基于扩展傅里叶振幅灵敏度检验法(EFAST)对WOFOST作物模型的26个初始参数进行全局敏感性分析,筛选敏感性参数,调整WOFOST模型的核心参数,利用查找表优化算法构建基于WOFOST模型和遥感LAI数据同化的区域尺度冬小麦单产预测模型,并定量预测区域冬小麦单产水平。结果表明,增强型植被指数(EVI)是遥感反演LAI的最佳植被指数(开花期建模r=0.913,RMSE=0.410,灌浆期建模r=0.798,RMSE=0.470),预测能力最强(开花期r=0.858,RMSE=0.531,灌浆期r=0.861,RMSE=0.428);筛选出6个待优化参数,即TSUM1、SLATB1、SLATB2、SPAN、EFFTB3和TMPF4;产量预测精度r=0.914,RMSE=253.67 kg·hm-2,找到了待优化参数的最佳取值,最终完成了单产模拟。  相似文献   

15.
为探究不同灌溉方式和施氮量对冬小麦籽粒氮代谢酶活性及蛋白质产量的影响,以矮抗58为材料,分析了不同灌溉方式(滴灌和漫灌)和施氮量下小麦籽粒产量、蛋白质产量及灌浆期不同穗位籽粒谷丙转氨酶(GPT)和谷氨酰胺合成酶(GS)活性的变化。结果表明,与漫灌相比,滴灌处理可显著提高籽粒产量和蛋白质产量,施氮量220 kg·hm-2下籽粒产量和蛋白质产量最高;各水氮处理下,小麦不同穗位籽粒GS和GPT活性均随籽粒灌浆进程的推进而降低,花后7~14 d下降迅速,之后下降缓慢;滴灌下,增施氮肥可显著提高灌浆中期中部和下部穗位籽粒GS活性及整个灌浆期各穗位籽粒GPT活性;漫灌下,增施氮肥可显著提高整个灌浆期中部和下部穗位籽粒GS活性及各穗位籽粒GPT活性。相关性分析表明,成熟期籽粒蛋白质含量分别与下部穗位籽粒GS活性、中部和下部穗位籽粒GPT活性呈显著相关,蛋白质产量分别与下部穗位籽粒GS活性和上部穗位籽粒GPT活性呈显著相关,籽粒产量与下部穗位籽粒GS活性及各穗位GPT活性呈显著相关。综合考虑籽粒产量、蛋白质产量及水氮投入认为,滴灌下施氮量220 kg·hm-2可作为该地区小麦适宜栽培模式的参考。  相似文献   

16.
四川盆地弱光照生态区小麦超高产技术途径分析   总被引:1,自引:0,他引:1  
为提升四川盆地弱光照生态区小麦产量潜力,基于2005-2012年系列控制性试验和农民高产跟踪田数据,系统分析了该区域限制小麦高产的关键因子及实现超高产(9t·hm-2以上)的技术途径.结果表明,小麦籽粒产量与单位面积穗数呈极显著正相关关系,但相关程度随产量水平的提升而下降(y=-0.151x+1.453,R2 =0.329,P<0.05),9 t·hm 2以上时穗粒数和千粒重成为产量高低的决定性因素.籽粒产量普遍与生物产量、收获指数、生物生产率、籽粒生产率呈显著正相关,与抽穗期、全生育期呈显著负相关,与最高茎数、分蘖力和成穗率的相关程度则因试验不同而存在较大差异.籽粒产量与群体干重、叶面积指数等群体指标的相关程度:开花期>拔节期>苗期.高产田分蘖、拔节期的群体干重与中高产田相当甚至略低,但在开花期,高产田的干物质积累量显著高于中高产田,且个体质量也更高,着重反映在单茎绿叶数、旗叶SPAD值、单茎叶面积等指标上.根据上述结果和四川盆地生态条件,提出了在弱光照生态条件下小麦实现超高产的技术途径、阶段指标和关键技术.  相似文献   

17.
为筛选测墒补灌节水条件下实现小麦高产和氮素高效利用的最优施氮量,以小麦品种烟农1212为材料,在拔节期和开花期将0~40 cm土层土壤相对含水量补灌至70%条件下,设置0、120、180和240 kg·hm-2施氮量处理(分别用N0、N1、N2和N3代表),分析施氮量对测墒补灌小麦旗叶光合特性、干物质积累与转运和氮素利用率的影响。结果表明,N2处理下小麦花后7~28 d旗叶光合性能显著高于N0和N1处理,但施氮量增至N3时光合性能无显著变化。N2处理的营养器官花前贮藏干物质在花后向籽粒的转运量显著高于其他处理;花后光合同化物积累量显著高于N0和N1处理,但与N3处理无显著差异。成熟期N2处理干物质在籽粒中的分配比例较N0和N1处理分别高5.00和2.86个百分点。N2处理的籽粒灌浆持续时间和活跃灌浆期长,最大灌浆速率下粒重高,籽粒产量较N0和N1处理分别高41.01%和22.44%,且氮肥农学效率最高,氮肥偏生产力较高。综合考虑,180 kg·hm-2施氮量为测墒补灌节水条件下最佳施氮量。  相似文献   

18.
为了实现基于无人机的小麦产量快速预测,通过不同种植密度、氮肥和品种的田间试验,应用无人机航拍获取小麦生育前期(越冬前期和拔节期)的RGB图像,通过图像处理获取小麦田间颜色和纹理特征指数,并在小麦收获后测定实际产量。通过分析不同颜色和纹理特征指数与小麦产量的关系,筛选出适合小麦产量预测的颜色和纹理特征指数,建立小麦产量预测模型并进行验证。结果表明,小麦生育前期图像颜色指数与产量的相关性较好,而纹理特征指数相关性较差。对越冬前期利用单一颜色指数NDI构建的产量预测模型验证时,R为0.541,RMSE为671.26 kg·hm-2;对拔节期用单一颜色指数VARI构建的产量预测模型验证时,R为0.603,RMSE为639.78 kg·hm-2,预测结果比较理想,但不是最优。对越冬前期颜色指数NDI和纹理特征指数ENT相结合构建的产量预测模型验证时,R和RMSE分别为0.629和611.82 kg·hm-2,比单一颜色指数模型分别提升16.27%和减小8.85%;对拔节期颜色指数VARI和纹理特征指数COR相结合构建的产量预测模型验证时,R和RMSE分别为0.746和510.29 kg·hm-2,较单一颜色指数模型分别提升23.71%和减小20.24%。上述结果说明,将无人机图像颜色和纹理特征指数相结合建立的估产模型精度较高,可在小麦生育前期对产量进行有效预测。  相似文献   

19.
不同水氮处理对小麦耗水特性及产量的影响   总被引:3,自引:0,他引:3  
为给小麦高产节水栽培提供理论依据,以百农矮抗58为材料,在大田条件下设置3个灌水水平[不灌水(W0),灌1水(W1,拔节水),灌2水(W2,拔节和开花水)]和5个施氮水平[0kg·hm-2(N0)、90kg·hm-2(N1)、180kg·hm-2(N2)、240kg·hm-2(N3)、300kg·hm-2(N4)],研究水氮处理对冬小麦耗水特性及产量的影响。结果表明,随着施氮量的增加,小麦总耗水量和土壤贮水消耗量先增加后降低,以N3处理最高,各种水分利用效率也表现出相似趋势。随灌水次数的增加,总耗水量、土壤水利用效率和降水利用效率均提高,而水分利用效率和灌水利用效率则相反。阶段耗水量均随灌水次数增加而提高,施氮对阶段耗水量的影响因灌水不同而异,其中,N2和N3处理在拔节至开花期的耗水量较高,而在开花至成熟期则较低。籽粒产量随施氮量增加呈先升后降趋势,随灌水次数增加则持续提高。综合考虑产量和生产成本,W1N3处理为本试验条件下节水高产的水氮运筹推荐模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号