首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to investigate CRF- and neurophysin-immunoreactive neurocytes in hypothalamo-pituitary system of the hamster. CRF-immunoreactive nerve fibers were observed mainly in the outer layer of the median eminence and pituitary stalk and also in the neurohypophysis. On the contrary, neither intermediate lobe nor anterior pituitary contained CRF-immunoassayable substance. The pattern of distribution of neurophysin-immunoreactive fibres was different from CRF-immunoreactive fibres as far as a median eminence, pituitary stalk and neurohypophysis are concerned. Between the tannocytes of the III ventricle and nervous fibres forming the internal layer of the median eminence a CRF- and neurophysin-immunoreactive perikaryons of neurocytes were found. Results of the study suggest regulatory function of CRF-immunoreactive neurons of the hamster hypothalamo-pituitary system in controlling of ACTH secretion. Moreover, the distribution of CRF-immunoreactive substances in hamster hypothalamo-pituitary system shows some peculiarities if compared with other rodents.  相似文献   

2.
The effect of ether stress and dexamethasone on hypothalamo-hypophyseal-adrenal axis was investigated in sexually mature male Wistar rats. Separate group of rats was subjected to ether stress during 2 minutes. The remaining animals were treated with dexamethasone during 7 days. CRF-immunoreactive and vasopressin-immunoreactive neurons were detected within paraventricular nuclei and median eminence by using specific antibodies. Body weight of the rats as well as the weights of pituitary and adrenal glands were also measured. The levels of ACTH and corticosterone were determined in blood serum. It was found that the ether stress caused a considerable decrease in the amount of CRF-immunopositive substances in the outer layer of median eminence and a decrease in the amount of vasopressin-immunoreactive neurocytes in the parvocellular fragment of paraventricular nuclei. Dexamethasone administration caused an increase in the amount of CRF-immunopositive perikaryons within paraventricular nuclei and also an increase in vasopressin-immunopositive nerve fibers in median eminence.  相似文献   

3.
Immunohistochemical localization of corticotropin-releasing factor (CRF)-like immunoreactivity in the brain of the Japanese quail was studied by means of the peroxidase anti-peroxidase (PAP) method. CRF-immunopositive perikarya of parvocellular neurons were observed mainly in the nucleus praeopticus medialis and nucleus paraventricularis. Additional perikarya were also detected in the nucleus hypothalamicus posterior medialis in the hypothalamus and in the non-hypothalamic nucleus accumbens, nucleus septalis lateralis and nucleus dorsomedialis and dorsolateralis thalami. No CRF immunoreaction was found to coexist with the vasotocin (Vt)-containing system in comparative examination of consecutive sections treated with anti-vasopressin (Vp) serum. The CRF-immunoreactive fibers were detected mainly in the external layer of the anterior median eminence but not in its posterior division. Unilateral adrenalectomy induced the marked reduction in number of the CRF immunopositive fibers in the anterior median eminence.  相似文献   

4.
Summary The presence and distribution of CRF-immunoreactive cells and nerve fibers were studied in the mammillary body of the rat, 12 days after placing various types of lesions within the hypothalamus. Anterior and anteriolateral cuts, placed in the midhypothalamus immediately behind the paraventricular nuclei resulted in an almost complete disappearance of CRF-immunoreactive fibers from the median eminence and simultaneous appearance of CRF-containing neurons in the mammillary body. Posterior or postero-lateral hypothalamic cuts carried out in front of the mammillary body caused the accumulation of CRF-immunoreactive material in neurons and neural processes located behind the cut-line. This type of intervention had no effect on the quantity of CRF fibers in the median eminence. A cut running through the central part of the mammillary body in the frontal plane resulted in appearance of CRF neurons only in the posterior half of the mammillary region. Placing a cut behind and over the mammillary body, CRF-immunoreactive neurons became detectable below the superior cut-line. No immunoreactive neurons were observed in the mammillary body when the frontal cut reached the base of the brain at the posterior border of the nucleus, leaving intact its anterior and superior connections. In all these cases when the mammillo-thalamic tract was transected, CRF neurons became detectable in the mammillary body.  相似文献   

5.
Summary The distribution of VIP- and TRH-immunoreactivity in neurons and processes within the hypothalamus of the pigeon was investigated with light-microscopic immunocytochemical techniques. Most of the VIP-containing neurons are concentrated in the middle and caudal parts of the hypothalamus, with the greatest concentration of perikarya occurring in the medial and lateral part of the ventromedial hypothalamic nucleus and the infundibular nucleus. These cells give rise to axons that seem to extend into the median eminence. An extensive network of VIP-immunoreactive fibers and varicosities occupy the external layer of the median eminence. The majority of TRH-containing neurons is found in the anterior hypothalamus with the greatest concentration of cells in the magnocellular preoptic, medial preoptic, suprachiasmatic and paraventricular nuclei. TRH-immunoreactive fibers and varicosities form a dense arborization in the external layer of the median eminence. Lactation seems to induce substantial changes in VIP as well as in TRH-immunostaining in the median eminence and other hypothalamic regions as compared to control, sexually active animals. Furthermore, TRH-immunoreactivity decreased in the median eminence following 60-min exposure to cold. These results suggest that VIP- and TRH-containing pathways in the pigeon hypothalamus are involved in the mediation of neuroendocrine responses.  相似文献   

6.
Summary The localization of vasoactive intestinal polypeptide (VIP) in the hypothalamus of the quail has been studied by means of light- and electron-microscopic immunohistochemistry. Numerous VIP-immunoreactive perikarya are distributed in the caudal portion of the nucleus infundibularis (n. tuberis) and nucleus mamillaris lateralis, and sparse in the preoptic area, nucleus supraopticus and nucleus paraventricularis. Dense localization of immunoreactive-VIP fibers is observed in the external layer of the median eminence, in close contact with the primary portal capillaries. The main origins of these fiber terminals are VIP-immunoreactive perikarya of the nucleus infundibularis. These neurons are spindle or bipolar and extend one process to the ventricular surface and another to the external layer of median eminence. They are CSF-contacting neurons and apparently constitute the tubero-hypophysial tract that links the third ventricle and the hypophysial portal circulation. VIP-reactive neurons in the nucleus mamillaris lateralis also project axons to the external layer of the median eminence, constituting the posterior bundle of the tuberohypophysial tract. Numerous VIP-immunoreactive perikarya occur also in the nucleus accumbens/pars posterior close to the lateral ventricle. They are also CSF-contacting neurons extending a process to the lateral ventricle. There are moderate distributions of VIP-reactive fibers in the area ventralis and in the area septalis.Ultrastructurally, the immunoreactive products against VIP are found in the elementary granules, 75–115 nm in diameter, within the nerve fibers in the median eminence.This investigation was supported by Scientific Research Grants No. 00556196, No. 56360027 and No. 56760183 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

7.
Summary The ultrastructural effects of vinblastine on the arcuate neurons and median eminence were studied in the rat. The animals were stereotaxically injected with solutions of 1 mM and 5 mM vinblastine into the median eminence and killed 3, 8 and 21 days after injection. Eight days after injection of 1 mM vinblastine the neurons of the arcuate nucleus showed marked changes. The Golgi complex was more distinct and considerable increases in the populations of dense bodies, granulated vesicles and coated vesicles were observed. Changes in the axo-somatic synapses and degenerating fibers in the surrounding neuropil were also characteristic of the experimental animals. The outer zone of the median eminence showed numerous degenerated nerve fibers and fibers engulfed by glial cell processes. Eight days after injection of 5 mM vinblastine arcuate neurons and median eminence showed similar changes, but quantitative differences were noted. A striking ultrastructural recovery of the arcuate neurons and axons in the outer zone of the median eminence was observed 21 days after injection of either 1 mM or 5 mM vinblastine. The results are discussed in relation to axoplasmic transport and axonal degeneration.Supported by CONICET and National University of Cuyo, Argentina.Members of the Scientific Research Career of the Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina.  相似文献   

8.
Summary The anatomical distribution of neurons and nerve fibers containing corticotropin-releasing factor (CRF) has been studied in the brain of the snake, Natrix maura, by means of immunocytochemistry using an antiserum against rat CRF. To test the possible coexistence of CRF with the neurohypophysial peptides arginine vasotocin (AVT) and mesotocin (MST) adjacent sections were stained with antisera against the two latter peptides. CRF-immunoreactive (CRF-IR) neurons exist in the paraventricular nucleus (PVN). In some neurons of the PVN, coexistence of CRF with MST or of CRF with AVT has been shown. Numerous CRF-IR fibers run along the hypothalamo-hypophysial tract and end in the outer layer of the median eminence. In addition, some fibers reach the neural lobe of the hypophysis. CRF-IR perikarya have also been identified in the following locations: dorsal cortex, nucleus accumbens, amygdala, subfornical organ, lamina terminalis, nucleus of the paraventricular organ, nucleus of the oculomotor nerve, nucleus of the trigeminal nerve, and reticular formation. In addition to all these locations CRF-IR fibers were also observed in the lateral septum, supraoptic nucleus, habenula, lateral forebrain bundle, paraventricular organ, hypothalamic ventromedial nucleus, raphe and interpeduncular nuclei.  相似文献   

9.
Adrenomedullin-like immunoreactivity in the hypothalamo-neurohypophysial tract in colchicine-treated and hypophysectomized rats was examined by immunohistochemistry. Adrenomedullin-like immunoreactive (AM-LI) neurons were localized in the hypothalamic areas, including the paraventricular nuclei and the supraoptic nuclei. Abundant AM-LI fibers and varicosities were found in the hypothalamoneurohypophysial tract and the internal zone of the median eminence in the colchicine-treated and hypophysectomized rats, whereas in control rats few AM-LI fibers were observed. These results suggest that the axons of the AM-LI neurons in the hypothalamus may terminate in the neurohypophysis.  相似文献   

10.
The interrelationships of corticotropin-releasing factor (CRF) immunoreactive neuronal cell bodies and processes have been examined in the paraventricular nucleus (PVN) of adrenalectomized-dexamethasone treated rats. Antisera generated against ovine CRF (oCRF) were used in the peroxidase-anti-peroxidase-complex (PAP)-immunocytochemical method at both the light and electron microscopic levels. In this experimental model, a great number of CRF-immunoreactive neurons were detected in the parvocellular subdivisions of the PVN and a few scattered labelled parvocellular neurons were also observed within the magnocellular subunits. Characteristic features of immunolabeled perikarya included hypertrophied rough endoplasmic reticulum with dilated endoplasmic cisternae, well developed Golgi complexes and increased numbers of neurosecretory granules. These features are interpreted to indicate accelerated hormone synthesis as a result of adrenalectomy. Afferent fibers communicated with dendrites and somata of CRF-immunoreactive neurons via both symmetrical and asymmetrical synapses. Some neurons exhibited somatic appendages and these structures were also observed to receive synaptic terminals. Within both the PVN and its adjacent neuropil, CRF-immunoreactive axons demonstrated varicosites which contained accumulations of densecore vesicles. CRF-containing axons were observed to branch into axon collaterals. These axons or axon collaterals established axo-somatic synapses on CRF-producing neurons in the parvocellular regions of the PVN, while in the magnocellular area of the nucleus they were found in juxtaposition with unlabeled magnocellular neuronal cell bodies or in synaptic contact with their dendrites. The presence of CRF-immunoreactive material in presynaptic structures suggests that the neurohormone may participate in mechanisms of synaptic transfer. These ultrastructural data indicate that the function of the paraventricular CRF-synthesizing neurons is adrenal steroid hormone dependent. They also provide morphological evidence for the existence of a neuronal ultrashort feed-back mechanism within the PVN for the regulation of CRF production and possibly that of other peptide hormones contained within this complex.  相似文献   

11.
The nerve fiber layer of the opossum olfactory bulb, formed by axons originating from bipolar neurons in the olfactory epithelium, and glomeruli are intensely immunoreactive for olfactory marker protein. The surrounding extra-glomerular neuropil contains numerous periglomerular neurons immunoreactive for either tyrosine hydroxylase or corticotropin releasing factor. Dendrites of both types of immunoreactive neurons extend into the intraglomerular neuropil. CRF-immunoreactive neurons are fewer in number than TH-immunoreactive neurons and are observed primarily in the periglomerular region. Occasional, scattered TH-immunoreactive neurons are seen in the deeper layers of the olfactory bulb.  相似文献   

12.
Summary The interrelationships of corticotropin-releasing factor (CRF) immunoreactive neuronal cell bodies and processes have been examined in the paraventricular nucleus (PVN) of adrenalectomized-dexamethesone treated rats. Antisera generated against ovine CRF (oCRF) were used in the peroxidase-anti-peroxidase-complex (PAP)-immunocytochemical method at both the light and electron microscopic levels. In this experimental model, a great number of CRF-immunoreactive neurons were detected in the parvocellular subdivisions of the PVN and a few scattered labelled parvocellular neurons were also observed within the magnocellular subunits. Characteristic features of immunolabeled perikarya included hypertrophied rough endoplasmic reticulum with dilated endoplasmic cisternae, well developed Golgi complexes and increased numbers of neurosecretory granules. These features are interpreted to indicate accelerated hormone synthesis as a result of adrenalectomy. Afferent fibers communicated with dendrites and somata of CRF-immunoreactive neurons via both symmetrical and asymmetrical synapses. Some neurons exhibited somatic appendages and these structures were also observed to receive synaptic terminals. Within both the PVN and its adjacent neuropil, CRF-immunoreactive axons demonstrated varicosites which contained accumulations of densecore vesicles. CRF-containing axons were observed to branch into axon collaterals. These axons or axon collaterals established axo-somatic synapses on CRF-producing neurons in the parvocellular regions of the PVN, while in the magnocellular area of the nucleus they were found in juxtaposition with unlabeled magnocellular neuronal cell bodies or in synaptic contact with their dendrites. The presence of CRF-immunoreactive material in presynaptic structures suggests that the neurohormone may participate in mechanisms of synaptic transfer.These ultrastructural data indicate that the function of the paraventricular CRF-synthesizing neurons is adrenal steroid hormone dependent. They also provide morphological evidence for the existence of a neuronal ultrashort feedback mechanism within the PVN for the regulation of CRF production and possibly that of other peptide hormones contained within this complex.Supported by NIH grant NS 19266 to WKP  相似文献   

13.
Summary The location, cytology and projections of vasopressin-, oxytocin-, and neurophysin-producing neurons in the guinea pig were investigated using specific antisera against vasopressin, oxytocin or neurophysin in the unlabeled antibody enzyme immunoperoxidase method. Light microscopic examination of the neurons of the supraoptic and paraventricular nuclei shows that hormone is transported not only in axons, but also in processes having the characteristics of dendrites. Neurons were found to contain only vasopressin or oxytocin; all neurons containing neurophysin appear to contain either vasopressin or oxytocin. In the neural lobe, vasopressin and oxytocin terminals are intermingled. In the median eminence, vasopressin and oxytocin fibers are intermingled in the internal zone. In a caudal portion of the median eminence, a number of vasopressin and neurophysin (but few oxytocin) axons enter the external zone from the internal zone, and surround portal capillaries. In the supraoptic nucleus, vasopressin neurons outnumber oxytocin neurons with a ratio of at least 5:1. The paraventricular nucleus is separated into two distinct groups of neurons, a lateral group consisting of only vasopressin neurons, and a medial group consisting of only oxytocin neurons. In addition to axons passing to the neurohypophysis, a number of axons appear to interconnect the supraoptic and paraventricular nuclei.Supported by the Deutsche Forschungsgemeinschaft (SFB 51, C/21 and C/27), (We 608/3)Acknowledgements. The authors are greatly indebted to Mmes. R. Köpp-Eckmann, B. Reijerman, A. Scheiber, I. Wild and Mr. U. Schrell for technical assistance, to Mmes. P. Campbell and U. Wolf for editorial assistance, and to Dr. R.R. Dries and Ferring Pharmaceuticals, Kiel, for the generous provision of high quality peptides  相似文献   

14.
McDonald J  Calka J 《Acta anatomica》1994,151(3):171-179
The purpose of this study was to examine the anatomical relationships of perikarya and fibers containing neuropeptide Y (NPY) and luteinizing-hormone-releasing hormone (LHRH) in the hypothalamus and preoptic region of female rats. In view of our previous report of stimulatory effects of estrogen on LHRH and NPY levels in the median eminence, animals were bilaterally ovariectomized and subsequently implanted subcutaneously with capsules containing estradiol benzoate in oil or vehicle. Following intracerebroventricular injection of colchicine, rats were perfused with fixative and their brains sectioned and processed for immunohistochemical visualization of NPY and LHRH in the same section and in consecutive sections. Estrogen treatment had no discernible effect on the distribution or relationship of these peptides. NPY-immunoreactive fibers were intimately associated with LHRH-labeled primary dendrites and perikarya in the medial preoptic region and horizontal limb of the diagonal band of Broca. Fibers containing NPY or LHRH overlapped extensively in the lateral palisade region of the median eminence and also in the subependymal and internal zones. The external zone of the median eminence displayed relatively less overlap of these peptide systems. LHRH-immunoreactive axons coursed among NPY-labeled perikarya in the arcuate nucleus and appeared to contact these cells. These results suggest that NPY-containing axons may influence LHRH-positive neurons at the cell body and also at the site of axon termination in the median eminence. LHRH-containing axons appear to contact NPY-immunoreactive perikarya in the arcuate nucleus and may interact with terminals in the median eminence. This arrangement may provide a mechanism for communication between NPY and LHRH neurons and for the neuroendocrine coordination of hypothalamic NPY and LHRH secretion before ovulation.  相似文献   

15.
Summary In the toad Bufo arenarum Hensel the following regions of the hypothalamic — neurohypophyseal system were studied under the electronmicroscope: preoptic and paraventricular nuclei, median eminence and infundibular process of the neurohypophysis.Neuronal perikarya of the preoptic nucleus are loaded with typical neurosecretory granules of peptidergic nature having a mean diameter of 1660 Å. While most neurons of the winter toad are in a storage stage a few show signs of a more active synthetic activity. A distinctive feature of preoptic neurons is the presence of large lipid droplets. The paraventricular nucleus contains small neurons containing granulated vesicles with a mean diameter of 800-1000 Å. In the region extending between these two nuclei and the median eminence axons containing either neurosecretory elementary granules or granulated vesicles are observed.The inner zone of the median eminence is occupied by axons of the preoptic neurohypophyseal tract; two types of axons, according to the size and density of the neurosecretory granules, may be recognized. The outer zone of the median eminence contains mainly axons and nerve terminals containing granulated vesicles of probable monoaminergic nature and only a few with granules of peptidergic type.The neurohypophysis contains two kinds of axons: one with more dense granules of 1800 Å and the other with granules of lesser electron density and 2100 Å. At the ending proper small clear vesicles of synaptic type are found.A progressive increase in volume of the peptidergic granules along the axon is demonstrated. This is of the order of 218% from the preoptic perikarya down to the infundibular process. The physiological significance of the two neurosecretory systems — i.e. the monoaminergic and the peptidergic — and the probable nature of the two types of peptidergic axons is discussed.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).The authors want to express their gratitude to Mrs. Defilippi-Novoa and Mr. Alberto Sáenz for their skillful assistance.  相似文献   

16.
Recent isolation, structural identification, and synthesis of ovine CRF has made possible the generation of specific antibodies against this hypothalamic peptide. Two fragments of the amino acid sequence corresponding to ovine CRF (CRF 37-41 and CRF 22-41), as well as the full sequence of 41 residues (CRF 1-41), synthesized in our laboratories by solid-phase methods, were coupled to bovine serum albumin (BSA) with glutaraldehyde. New Zealand white rabbits were immunized with the emulsified mixtures of peptide-BSA conjugates and Freund's adjuvant as immunogens. The specificity of the generated antibodies was studied by agar-gel diffusion, absorption tests in the immunohistochemical system, and with the aid of displacement curves in RIA. 125I-Tyr(35)-CRF 36-41 and 125I-Tyr(0)-CRF 1-41 were used as radioligands in the RIA. The minimum detectable dose was 20 pg. The linearity observed in RIA for immunoreactive CRF in extracts of rat hypothalami, together with the immunocytochemical findings in the rat brain, indicate the presence of substance(s) immunologically indistinguishable from CRF. Immunohistochemistry with the peroxidase-antiperoxidase (PAP) technique detected the following CRF-immunoreactive structures in vibratome sections of hypothalami of colchicine-treated rats: CRF-containing cell bodies were observed mainly in smaller neurons of the paraventricular nucleus. CRF-positive nerve fibers and/or terminals were present in the external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. The CRF-positive terminals were localized in the central regions of the median eminence. These morphological data reinforce the view that this polypeptide plays a physiological role in the control of ACTH release.  相似文献   

17.
Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tuberoinfundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.Key words: Dopamine D1 and D2 receptors, tubero-infundibular dopamine neurons, dopamine receptor colocalization, arcuate-median eminence complex, volume transmission, luteinizing hormone releasing hormone  相似文献   

18.
Summary We examined the immunocytochemical distribution of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis, in the di-and mesencephalon of developing bullfrog tadpoles. Special attention was given to catecholaminergic innervation of the median eminence and pituitary. In premetamorphic tadpoles, tyrosine hydroxylase-immunoreactive neurons were visualized in the suprachiasmatic and infundibular hypothalamus, the ventral thalamus, and midbrain tegmentum by Taylor-Kollros stage V. The number of labeled neurons in all these areas increased as metamorphosis progressed. By mid-prometamorphosis, labeled neurons appeared in the preoptic recess organ as well as in the posterior thalamic nucleus. The majority of cells in the preoptic recess organ, as well as occasional neurons in the suprachiasmatic nucleus, exhibited labeled processes which projected through the ependymal lining of the preoptic recess to contact cerebrospinal fluid. The modified CSF-contacting neurons of the nucleus of the periventricular organ were devoid of specific staining. By late prometamorphosis, labeled fibers from the suprachiasmatic nucleus were observed projecting caudally to enter the hypothalamo-hypophysial-tract en route to innervating the median eminence and pituitary. Labeled fibers arising from the dorsal infundibular nucleus projected ventrolaterally to contribute to catecholaminergic innervation of the median eminence and pituitary. Immunoperoxidase staining of tyrosine hydroxylase-immunoreactive fibers and terminal arborizations in the median eminence were restricted to non-ependymal layers, while labeled fibers in the pituitary were observed in the pars intermedia and pars nervosa. Staining of tyrosine hydroxylase-immunoreactive fibers in the median eminence and pituitary was sparse or absent in premetamorphic tadpoles, but became increasingly more intense as metamorphosis progressed.  相似文献   

19.
The immunocytochemical localization of neurons containing the 41 amino acid peptide corticotropin-releasing factor (CRF) in the rat brain is described. The detection of CRF-like immunoreactivity in neurons was facilitated by colchicine pretreatment of the rats and by silver intensification of the diaminobenzidine end-product. The presence of immunoreactive CRF in perikarya, neuronal processes, and terminals in all major subdivisions of the rat brain is demonstrated. Aggregates of CRF-immunoreactive perikarya are found in the paraventricular, supraoptic, medial and periventricular preoptic, and premammillary nuclei of the hypothalamus, the bed nuclei of the stria terminalis and of the anterior commissure, the medial septal nucleus, the nucleus accumbens, the central amygdaloid nucleus, the olfactory bulb, the locus ceruleus, the parabrachial nucleus, the superior and inferior colliculus, and the medial vestibular nucleus. A few scattered perikarya with CRF-like immunoreactivity are present along the paraventriculo-infundibular pathway, in the anterior hypothalamus, the cerebral cortex, the hippocampus, and the periaqueductal gray of the mesencephalon and pons. Processes with CRF-like immunoreactivity are present in all of the above areas as well as in the cerebellum. The densest accumulation of CRF-immunoreactive terminals is seen in the external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. The widespread but selective distribution of neurons containing CRF-like immunoreactivity supports the neuroendocrine role of this peptide and suggests that CRF, similarly to other neuropeptides, may also function as a neuromodulator throughout the brain.  相似文献   

20.
Summary The arcuate complex, comprising the nucleus and the outer zone of the median eminence, was studied under the electron microscope in control and castrated rats of both sexes. One month after castration the arcuate neurons show signs of hyperactivity characterized by dilated cisternae of the endoplasmic reticulum, a large nucleolus, situated near the nuclear envelope and fewer granulated vesicles. The surrounding neuropile shows an increase in the number of granulated vesicles above the control level. Six months after castration the changes already described are more accentuated. In the outer zone of the median eminence the axons and terminals show a considerable increase in the number of granulated vesicles which is of the order of 50 per cent above the control. A correlation between the granulated vesicles and the high content in dopamine of the arcuate complex is postulated. The ultrastructural changes observed in the arcuate complex, after castration, are discussed in relation to the current knowledge on the histophysiology of this region of the hypothalamus and specially on the probable regulatory effect of monoamines on the secretion of gonadotrophins.Supported by grants from the Consejo Nacional de Investigaciones Cientificas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).We are deeply indebted to Mrs. Defilippi-Novoa and Mr. Alberto Saenz for their skilful assistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号