首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative studies of the use of chlorine/ultraviolet (Cl2/UV) and hydrogen peroxide/ultraviolet (H2O2/UV) Advanced oxidation processes (AOPs) to remove trichloroethylene (TCE) from groundwater in a pump‐and‐treat application were conducted for the first time at the full‐scale operational level at two water treatment facilities in Northern California. In these studies, aqueous chlorine replaced hydrogen peroxide in the AOP treatment step, where the oxidant is exposed to UV light to produce highly reactive radical species that degrade groundwater contaminants. TCE removal rates as a function of initial chlorine dose and pH were then determined. At the site where the natural pH of the water was 7.1, TCE was removed (to a concentration of less than 0.5 µg/L) for nearly every chlorine dose point tested, and pH adjustment slightly enhanced the treatment process at this facility. The second site had a high natural pH of 7.7, and here, TCE was not completely removed for any chlorine dose up to 5.7 mg/L, although TCE removal did increase when the chlorine dose increased between 0.9 and 3.6 mg/L. Residual TCE remaining in the water post‐Cl2/UV was readily removed using active carbon filtration, which is part of the overall treatment train at this facility. These studies also verified that Cl2/UV AOP did not interfere with the photolysis of N‐nitrosodimethylamine or result in an effluent acutely toxic toward Ceriodaphnia dubia. Comparative economic analysis revealed that the chemical costs associated with Cl2/UV AOP were 25 to 50% of the costs associated with in place H2O2/UV AOP treatment.  相似文献   

2.
Gas‐saturated groundwater forms bubbles when brought to atmospheric pressure, preventing precise determination of its in situ dissolved gas concentrations. To overcome this problem, a modeling approach called the atmospheric sampling method is suggested here to recover the in situ dissolved gas concentrations of groundwater collected ex situ under atmospheric conditions at the Horonobe Underground Research Laboratory, Japan. The results from this method were compared with results measured at the same locations using two special techniques, the sealed sampler and pre‐evacuated vial methods, that have been developed to collect groundwater under its in situ conditions. In gas‐saturated groundwater cases, dissolved methane and inorganic carbon concentrations derived using the atmospheric sampling method were mostly within ±4 and ±10%, respectively, of values from the sealed sampler and pre‐evacuated vial methods. In gas‐unsaturated groundwater, however, the atmospheric sampling method overestimated the in situ dissolved methane concentrations, because the groundwater pressure at which bubbles appear (Pcritical) was overestimated. The atmospheric sampling method is recommended for use where gas‐saturated groundwater can be collected only ex situ under atmospheric conditions.  相似文献   

3.
Stable isotopes, 2Hwater, 18Owater as well as 18Osulphate and 34Ssulphate, were used to study the flow system of shallow groundwater and soil water at the base area of a former leaching heap at the uranium mining area of Ronneburg, Germany. The flow paths and water‐retention times were estimated by comparison of δ2H and δ18O values in groundwater and soil water to the δ2H and δ18O signature of precipitation, giving distinctive inputs of summer or winter precipitation. The points of measuring the groundwater were divided into three categories with different flow conditions: rapid flow, stagnant conditions and a transition zone by hierarchical cluster analysis of δ2H and δ18O values of groundwater. The transit time of groundwater in the rapid flow area is less than 6 months, whereas water in the stagnant zone is stored for at least 1 year. In soil water, a clear response to different input signals is detectable only in the 30‐cm horizon (retention time is about 6 months), whereas at deeper levels a mixing with older water is taking place. The isotopic composition of the dissolved sulphate was used to identify oxidation of sulphides as the source of sulphate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The expanding use of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations has increased public concern about potential impacts on the environment, especially on shallow drinking water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Berea Sandstone and the Rogersville Shale. To assess baseline groundwater chemistry and evaluate methane detected in groundwater overlying the Berea and Rogersville plays, we sampled 51 water wells and analyzed the samples for concentrations of major cations and anions, metals, dissolved methane, and other light hydrocarbon gases. In addition, the stable carbon and hydrogen isotopic composition of methane (δ13C‐CH4 and δ2H‐CH4) was analyzed for samples with methane concentration exceeding 1 mg/L. Our study indicates that methane is a relatively common constituent in shallow groundwater in eastern Kentucky, where methane was detected in 78% of the sampled wells (40 of 51 wells) with 51% of wells (26 of 51 wells) exhibiting methane concentrations above 1 mg/L. The δ13C‐CH4 and δ2H‐CH4 ranged from ?84.0‰ to ?58.3‰ and from ?246.5‰ to ?146.0‰, respectively. Isotopic analysis indicated that dissolved methane was primarily microbial in origin formed through CO2 reduction pathway. Results from this study provide a first assessment of methane in the shallow aquifers in the Berea and Rogersville play areas and can be used as a reference to evaluate potential impacts of future horizontal drilling and hydraulic fracturing activities on groundwater quality in the region.  相似文献   

5.
A simple, inexpensive sampling pump has lately come into use in ground water monitoring. The pump is referred to as an inertial pump; its only downhole components are a foot valve connected to a length of tubing or pipe. The operating principle of the pump is based on the inertia of a column of water within the riser tubing. Ground water is drawn through the foot valve and up the riser tubing by rapid up and down movements of the tubing. This pumping method is not new, but has only recently been applied to monitoring wells. Foot valves are available in a variety of materials and sizes and can be used in monitoring wells as small as 19mm (3/4 inch) I.D. Flexible polyethylene or Teflon® tubing, and in some cases stainless steel tubing or rigid PVC pipe, is used as the riser. The inertial pump satisfies most of the criteria normally cited for an "ideal" sampling device. The pump is easy to operate, reliable, durable, portable, and virtually maintenance-free. It can be operated manually from as deep as 40m or from as deep as 60m using a motor drive. The pump is inexpensive, and therefore suitable for use as a dedicated sampling pump. Recent tests have shown the pump to be suitable for sampling volatile organics. The inertial pump has a high flow capacity and performs well in silty/sandy environments, which makes it useful for developing and purging monitoring wells. It may also be used to perform field hydraulic conductivity tests.  相似文献   

6.
To enable a wider use of dissolved noble gas concentrations and isotope ratios in groundwater studies, we have developed an efficient and portable sampling device using a commercially available membrane contactor. The device separates dissolved gases from a stream of water and collects them in a small copper tube (6 mm in diameter and 100 mm in length with two pinch‐off clamps) for noble gas analysis by mass spectrometry. We have examined the performance of the sampler using a tank of homogeneous water prepared in the laboratory and by field testing. We find that our sampling device can extract heavier noble gases (Ar, Kr, and Xe) more efficiently than the lighter ones (He and Ne). An extraction time of about 60 min at a flow rate of 3 L/min is sufficient for all noble gases extracted in the sampler to attain equilibrium with the dissolved phase. The extracted gas sample did not indicate fractionation of helium (3He/4He) isotopes or other noble gas isotopes. Field performance of the sampling device was tested using a groundwater well in Vienna and results were in excellent agreement with those obtained from the conventional copper tube sampling method.  相似文献   

7.
Chahardouly basin is located in the western part of Iran and is characterized by semi‐arid climatic conditions and scarcity in water resources. The main aquifer systems are developed within alluvial deposits. The availability of groundwater is rather erratic owing to the occurrence of hard rock formation and a saline zone in some parts of the area. The aquifer systems of the area show signs of depletion, which have taken place in recent years due to a decline in water levels. Groundwater samples collected from shallow and deep wells were analysed to examine the quality characteristics of groundwater. The major ion chemistry of groundwater is dominated by Ca2+ and HCO3?, while higher values of total dissolved solids (TDS) in groundwater are associated with high concentrations of all major ions. An increase in salinity is recorded in the down‐gradient part of the basin. The occurrence of saline groundwater, as witnessed by the high electrical conductivity (EC), may be attributed to the long residence time of water and the dissolution of minerals, as well as evaporation of rainfall and irrigation return flow. Based on SAR values and sodium content (%Na), salinity appears to be responsible for the poor groundwater quality, rendering most of the samples not suitable for irrigation use. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Distinguishing Iron-Reducing from Sulfate-Reducing Conditions   总被引:2,自引:0,他引:2  
Ground water systems dominated by iron‐ or sulfate‐reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS?, and S= species and denoted here as “H2S”). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron‐ and the sulfate‐reducing microorganisms that catalyze the production of Fe2+ and H2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2~0.2 to 0.8 nM). Conversely, if the Fe2+/H2S ratio was less than 0.30, consistent sulfate‐reducing (H2~1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron‐ and sulfate‐reducing zones or concomitant iron and sulfate reduction under nonelectron donor–limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems.  相似文献   

9.
Emulsified vegetable oil (EVO) is widely used as a fermentable substrate to enhance the reductive dechlorination of chlorinated ethenes (CEs) in groundwater systems. The fermentation of EVO by naturally occurring bacteria produces molecular hydrogen (H2) which acts as an electron donor driving microbially mediated reductive dechlorination. While dissolved H2 drives much of the dechlorination associated with CE bioremediation, the dynamics of H2 production and consumption associated with EVO addition to groundwater systems is seldom documented. The present study shows how H2 concentrations changed over a 4-year period following EVO addition to a sandy coastal plain aquifer underlying Naval Air Station Pensacola, Florida, USA. Prior to EVO addition, H2 concentrations at the site were in the range characteristic of Fe(III)-reducing conditions (0.2–0.6 nM). Following EVO addition, H2 concentrations increased exponentially, peaking at approximately 25,000 nM. Hydrogen concentrations then began decreasing exponentially, and by 4 years after EVO addition had stabilized at 4.0 nM. That pattern suggests symbiotic cross-feeding between fermentative and respirative microbial populations resulting in a Gaussian rise and fall of H2 concentrations. That, in turn, suggests while EVO biostimulation can temporarily increase H2 concentrations to very high levels, those higher concentrations are unlikely to be sustained indefinitely.  相似文献   

10.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Major‐ion compositions of groundwater are employed in this study of the water–rock interactions and hydrogeochemical evolution within a carbonate aquifer system. The groundwater samples were collected from boreholes or underground tunnels in the Ordovician limestone of Yanzhou Coalfield where catastrophic groundwater inflows can be hazardous to mining and impact use of the groundwater as a water supply. The concentration of total dissolved solid (TDS) ranged from 961 to 3555 mg/l and indicates moderately to highly mineralized water. The main water‐type of the middle Ordovician limestone groundwater is Ca‐Mg‐SO4, with SO42‐ ranging from 537 to 2297 mg/l, and average values of Ca2+ and Mg2+ of 455.7 and 116.6 mg/l, respectively. The water samples were supersaturated with respect to calcite and dolomite and undersaturated or saturated with respect to gypsum. Along the general flow direction, deduced from increases of TDS and Cl, the main water–rock interactions that caused hydrogeochemical evolution of the groundwater within the aquifer were the dissolution of gypsum, the precipitation of calcite, the dissolution or precipitation of dolomite, and ion exchange. Ion exchange is the major cause for the lower mole concentration of Ca2+ than that of SO42‐. The groundwater level of Ordovician aquifer is much higher than that of C‐P coal‐bearing aquifers, so the potential flow direction is upward, and the pyrite in coal is not a possible source of sulfate; additional data on the stable sulfur and oxygen isotopic composition of the sulfate may be helpful to identify its origin. Although ion exchange probably accounts for the higher mole concentration of Na+ than that of Cl, the dissolution of aluminosilicate cannot be ruled out. The data evaluation methods and results of this study could be useful in other areas to understand flow paths in aquifers and to provide information needed to identify the origin of groundwater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
在浙江省珊溪水库地区布设5条断层土壤气Rn和H2测线,并选取15个溶解水氡采样测点。测量结果显示,其中有3条土壤气测线上的Rn浓度均值超过70 Bq/L,土壤H2测值最高达1 377 ppm,水样中溶解氡浓度最高值为68.3 Bq/L。通过珊溪水库地区历史地震活动和地质构造情况分析,发现该地区土壤Rn、H2和溶解水氡的高值分布区均与双溪—焦溪垟断裂F11-3分支的空间位置密切相关,该断裂分支是珊溪水库地区小震活动的发震断裂。另外通过研究发现,历史震群活动距今时间以及震群活动的频度和强度是影响珊溪水库地区土壤气Rn和H2地球化学特征的重要因素。  相似文献   

13.
Loss of volatile organics during sampling is a well-recognized source of bias in ground water monitoring; sampling protocols attempt to minimize such loss. Such bias could be enhanced for ground water highly charged with dissolved gases such as methane. Such ground water was the object of this study. A positive-displacement bladder pump, a momentum-lift pump and a suction-lift, peristaltic pump were employed in sampling both methane-charged ground water for volatile aromatic hydrocarbons and a CO2-charged reservoir water for volatile chlorinated hydrocarbons. In both cases, the suction-lift pump produced samples with a significant negative bias (9 to 33 percent) relative to the other methods. Little difference between samples produced by the other pump Systems was noted at the field site, but in sampling the reservoir, the bladder pump produced samples that were 13 to 19 percent lower in halocarbon concentration than were samples from the momentum-lift pump.
These negative biases are tentatively interpreted as losses due to volatilization during sampling. Slightly greater negative biases occur for compounds of higher volatility as estimated from their Henry's law constants. Additional studies appear to be warranted in order to adequately establish the scientific basis for recommending protocols for sampling ground water in which degassing could enhance the loss of volatile organics during sampling.  相似文献   

14.
Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point‐specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1‐D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine‐Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ13CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1‐D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine‐Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream‐gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water.  相似文献   

15.
Enhanced reductive bioremediation (ERB) is effective for treating a broad range of groundwater contaminants, but does result in secondary water quality impacts (SWQIs). Monitoring data from 47 ERB projects were analyzed to gain a better understanding of the formation and extent of SWQIs. The database analysis revealed that SWQIs occur at virtually every site, including reduced levels of background aqueous electron acceptors (O2, NO3?, and SO42?), increases in dissolved‐phase metals (Fe and Mn), and the production of CH4. However, the SWQI “plume” that is produced is usually confined within the original contaminant plume. As a result, SWQIs from ERB are unlikely to adversely impact potable water supplies. SWQIs do attenuate with distance downgradient, with concentrations often returning to near background levels. The results of the database analysis were combined with previous research to develop a general conceptual model (CM) of SWQI production, mobilization, and attenuation. This CM can assist in identifying conditions where SWQIs may pose a concern. These can include sites with low iron/high sulfate (H2S mobilization), high groundwater velocity (SWQIs at distances far downgradient), and sites with low CH4 anaerobic oxidation rates (CH4 migration).  相似文献   

16.
The fugacity vs. concentration ratio(Y) of dilute hydrogen dissolved in water was determined at temperatures below 500°C and pressures below 1000 bar by measuring H2 concentrations in magnetite-hematite-water and palladium hydride-water systems. Combining these results with reported solubility data of H2 in water and with the Shaw's expression for the activity-composition relationship of H2H2O mixture at higher temperatures, theP-T-Y diagram was constructed over theP-T range below 900°C and 1000 bar.  相似文献   

17.
It is important to understand the link between land surface/soil properties and shallow groundwater quality. To that end, soil properties and near‐water‐table groundwater chemistry of a shallow, unconfined aquifer were measured on a 100‐m grid on a 64‐ha irrigated field in southeastern North Dakota. Soil properties and hydrochemistry were compared via multivariate analysis that included product‐moment correlations and factor analysis/principal component analysis. Topographic low areas where the water table was in close proximity to the soil surface generally had higher apparent electrical conductivity (ECa) and higher percent silt and clay than higher positions on the landscape. The majority of the groundwater was characterized by Ca‐ and Mg‐HCO3 type water and was associated with topographic high areas with lower ECa and net groundwater recharge. Small topographic depressions were areas of higher ECa (net groundwater discharge) where salts that precipitated via evapotranspiration and evaporative discharge dissolved and leached to the groundwater during short‐term depression‐focused recharge events. At this site, groundwater quality and soil ECa were related to surface topography. High‐resolution topography and ECa measurements are necessary to characterize the land surface/soil properties and surficial groundwater quality at the field‐scale and to delineate areas where the shallow groundwater is most susceptible to contamination.  相似文献   

18.
The role of bedrock groundwater in rainfall–runoff processes is poorly understood. Hydrometric, tracer and subsurface water potential observations were conducted to study the role of bedrock groundwater and subsurface flow in the rainfall–runoff process in a small headwater catchment in Shiranui, Kumamoto prefecture, south‐west Japan. The catchment bedrock consists of a strongly weathered, fractured andesite layer and a relatively fresh continuous layer. Major chemical constituents and stable isotopic ratios of δ18O and δD were analysed for spring water, rainwater, soil water and bedrock groundwater. Temporal and spatial variation in SiO2 showed that stream flow under the base flow condition was maintained by bedrock groundwater. Time series of three components of the rainstorm hydrograph (rainwater, soil water and bedrock groundwater) separated by end member mixing analysis showed that each component fluctuated during rainstorm, and their patterns and magnitudes differed between events. During a typical mid‐magnitude storm event, a delayed secondary runoff peak with 1·0 l s−1 was caused by increase in the bedrock groundwater component, whereas during a large rainstorm event the bedrock groundwater component increased to ≈ 2·5 l s−1. This research shows that the contribution of bedrock groundwater and soil water depends strongly on the location of the groundwater table, i.e. whether or not it rises above the soil–bedrock interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Phosphorus (P) concentrations in sediments and in surface and interstitial water from three gravel bars in a large river (Garonne River, southern France) were measured daily, downstream of a wastewater treatment plant for a city of 740 000 inhabitants (Toulouse). Measurements were made of vertical hydraulic gradient (VHG), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP) and total phosphorus (TP) in water and of three extractable forms of phosphorus (water extractable, NaOH extractable and H2SO4 extractable) in hyporheic sediments from the gravel bars. Dissolved phosphorus was the major contributor to TP (74–79%) in both interstitial and surface waters on all sampling dates, and in most cases surface water P concentrations were significantly higher than interstitial concentrations. Hyporheic sediment TP concentrations ranged between 269 and 465 µg g?1 and were highest in fine sediment fractions. Acid‐extractable P, a non‐bioavailable form, represented at least 95% of sediment TP. A positive relationship was observed between VHG and TP in two of the gravel bars, with wells that were strongly downwelling having lower TP concentrations. These results suggest that in downwelling zones, hyporheic sediments can trap surface‐derived dissolved P, and that much of this P becomes stored in refractory particulate forms. Bioavailable P is mainly present in dissolved form and only occupies a small fraction of total P, with particulate P comprising the majority of total P. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Detection of free-phase gas (FPG) in groundwater wells is critical for accurate assessment of dissolved gas concentrations and the occurrence of FPG in the subsurface, with consequent implications for understanding groundwater contamination and greenhouse gas emissions. However, identifying FPG is challenging during routine groundwater monitoring and there is poor agreement on the best approach to detect the occurrence of FPG in groundwater. In this study, laboratory experiments in a water column were designed to mimic nonflowing and flowing conditions in a groundwater well to evaluate how the presence of FPG affects water pressure and commonly used continuous field parameters. The laboratory results were extrapolated to interpret field data at an abandoned exploration well with episodic release of free-gas CO2. The FPG effect on water pressure varied between flowing and nonflowing wells, and depending on whether the FPG was above or below the sensor. Electrical conductivity values were decreased and/or behaved erratically when FPG was present in the water column. Findings from this study have shown that the combined measurement of water pressure, electrical conductivity, and total dissolved gas pressure can provide information about the occurrence of FPG in groundwater wells. Measurement of these parameters at different depths can also provide information about relative depths and amounts of FPG within the well water column. This approach can be used for long-term monitoring of groundwater gases, managing gas-locking in production wells with gassy groundwater, and measuring fugitive greenhouse gas emissions from groundwater wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号