首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用乙烯基三甲氧基硅烷(VTMOS)对SiO_2疏水改性,通过自组装法,将改性SiO_2接枝在商业PVDF (聚偏氟乙烯)膜表面,使其表面达到超疏水。利用场发射电子显微镜、红外光谱仪、接触角测量仪及毛细流孔径分析仪等仪器对改性前后膜的表面形貌、化学组成、接触角及孔径变化等性能参数进行表征。结果表明,VTMOS不仅对SiO_2疏水改性,还通过自身的水解缩聚反应,生成了规整圆球状的聚乙烯基倍半硅氧烷(PVSQ)微粒,纳米级SiO_2分布于微米级PVSQ表面,在改性膜表面构造了多层次微/纳米粗糙表面,在低表面能疏水基团乙烯基和甲氧基的共同作用下,成功实现了超疏水改性,改性膜水接触角达到159.5°,滚动角降至8.1°。以NaCl、HA和CaCl2混合溶液为进料液,对商业PVDF膜和改性膜进行了长期直接接触式膜蒸馏(DCMD)实验,探究其抗污染性能。结果表明,改性膜适用于长期DCMD实验,并表现出比商业PVDF膜更稳定的通量,截盐率始终大于99.99%,具有良好的稳定性和抗污染性能。  相似文献   

2.
针对聚偏氟乙烯(PVDF)多孔膜改性,将PVDF铸膜液加入添加剂进行物理共混是一种简单、有效的方法。文章综述了近年来利用不同添加剂通过物理共混改性PVDF多孔膜的研究进展,归纳了常见的添加剂类型,包括无机添加剂如二氧化硅(SiO2)、二氧化钛(TiO2)、氧化锌(ZnO)、碳纳米管(CNT)、氧化石墨烯(GO)等,有机添加剂如聚乙烯基吡咯烷酮(PVP)、聚二甲基硅氧烷(PDMS)、两亲性聚合物等。文章指出未来需加强对已有添加剂与PVDF物理共混成膜动力学和热力学研究,优化物理共混改性的制备过程,提高添加剂和膜基体的结合力,以制备高稳定性、性能优异的PVDF改性膜。  相似文献   

3.
《应用化工》2016,(8):1466-1469
研究制备了SiO_2-PVDF阳、阴离子交换膜,并确定了最佳的制备条件:聚偏氟乙烯(PVDF)的添加量与单体甲基丙烯酸缩水甘油酯(GMA)和交联剂二乙烯苯(DVB)总量比为2∶1,纳米二氧化硅添加量为0.10%,对阳、阴离子交换膜而言,DVB添加量分别为GMA的4%和5%。将制备的SiO_2-PVDF阳、阴离子交换膜利用热压成型法制得SiO_2-PVDF双极膜。最佳的热压温度为190℃,最佳的热压压力为10 MPa。  相似文献   

4.
采用含有烷基链的硅烷偶联剂改性纳米二氧化硅(SiO_2),然后将改性后的纳米二氧化硅与普通的直链聚丙烯(PP)熔融共混,制备纳米复合的PP材料。研究了烷基链长度以及改性纳米SiO_2加入量对PP的熔指、熔体强度、力学性能的影响规律。对比了碳原子数分别为3、6、12的烷基链改性后的纳米SiO_2对PP的增强效果。结果表明,碳原子数为12的烷基链改性纳米SiO_2对PP的增强效果最佳,最佳加入量为3%,熔指、熔体强度、力学性能均得到明显改善。  相似文献   

5.
以PBA(聚酯二元醇)、IPDI(异佛尔酮二异氰酸酯)、DMPA(2,2-二羟甲基丙酸)和BDO(1,4-丁二醇)为原料,DBTDL(二月桂酸二丁基锡)为催化剂,TEA(三乙胺)为中和剂,乙二胺为扩链剂,水为介质,采用共混法和原位聚合法合成了纳米SiO_2(纳米二氧化硅)改性WPU(水性聚氨酯)胶粘剂。研究结果表明:纳米SiO_2能有效提高WPU胶膜的热稳定性,并且采用原位聚合法制得的纳米SiO_2改性WPU胶粘剂之性能优于共混法;当w(纳米SiO_2)=2.0%、w(DMPA)=4.7%(均相对于预聚体质量而言)和R=n(—NCO)/n(—OH)=3.0时,采用原位聚合法制得的纳米SiO_2改性WPU胶粘剂的综合性能相对最佳。  相似文献   

6.
运用电渗析技术,采用聚偏氟乙烯(PVDF)阳离子交换膜、纳米二氧化硅(SiO2)/PVDF阳离子交换膜、改性SiO2/PVDF阳离子交换膜和商品阳离子膜处理高盐度、高COD废水。研究发现,电压、流量、脱盐时间和聚丙烯酰胺的黏附量对其脱盐效果有一定的影响,并通过比较改性SiO2/PVDF阳离子交换膜和商品阳离子膜的脱盐实验,证明改性SiO2/PVDF阳离子交换膜脱盐能力强、抗污染程度高。  相似文献   

7.
为了改善二氧化硅(SiO_2)纳米粒子在聚合物基体中的分散性,采用原子转移自由基聚合(ATRP)法将聚合物接枝到纳米SiO_2表面。用甲苯-2,4-二异氰酸酯(TDI)对纳米SiO_2表面进行改性,然后与2-羟基-2′-乙基-2′-溴丙酸乙酯(HMB)反应,在表面引入ATRP引发剂,合成纳米二氧化硅颗粒(SiO_2-Br)。红外光谱(FT-IR)分析、热失重分析(TGA)和X-射线光电子能谱(XPS)结果表明,成功制备了SiO_2-Br引发剂,并通过ATRP法将聚丙烯酰胺(PAM)接枝到纳米SiO_2表面。通过凝胶渗透色谱(GPC)和分散性实验对改性后的样品进行了表征,结果表明,改性后的纳米SiO_2在甲苯中具有良好的分散性。  相似文献   

8.
采用硅烷偶联剂(2-氰乙基)三乙氧基硅烷对纳米Al_2O_3粒子进行表面改性,利用热致相变法制备了改性Al_2O_3/PVDF有机无机杂化膜,研究了改性Al_2O_3的添加量对杂化膜性能的影响。经(2-氰乙基)三乙氧基硅烷改性后,纳米Al_2O_3粒子的团聚减少,改性后纳米Al_2O_3的平均最小粒径为52.23nm。与纯PVDF膜比较,改性纳米Al_2O_3的添加改善了PVDF膜的形貌结构,改性Al_2O_3/PVDF杂化膜形成的球晶明显增加,球晶的密度尺寸缩小,杂化膜中形成了大量连通的界面孔,膜的孔隙率升高,改善了PVDF膜的力学性能和亲水性,提高了截留率。当纳米粒子添加量达到5%时,膜的截留率提高了7.2%,膜的纯水通量达到了593.95L/(m~2·h),膜强度达到5.0MPa。  相似文献   

9.
《塑料》2016,(3)
以聚偏氟乙烯(PVDF)为基体材料,N,N-二甲基乙酰胺(DMAc)为溶剂,加入二氧化硅(SiO_2),利用相转化法制得共混膜PVDF/SiO_2,利用扫描电子显微镜(SEM)观察共混膜的结构。另外,通过成膜动力学、水通量、截留率、接触角以及差示扫描量热法(TGA)等测试,对共混膜的性能进行表征,确定SiO_2的最佳用量。结果表明:与PVDF膜相比,添加微米SiO_2可使共混膜的综合性能显著提高,且随着SiO_2含量的增加,共混膜的热稳定性呈增强趋势。当PVDF与SiO_2质量比为90/10时,成膜性能较好,成膜后表面孔分散均匀且孔径较小,膜内部形成相互贯通的孔结构,水通量由12.8 L/(m~2·h)增大到62.72 L/(m~2·h),截留率提高了17.9%,接触角降低了8°,共混膜的综合性能最佳。  相似文献   

10.
利用涤纶纤维丝(PET)编织管作为内支撑层,将纳米SiO_2添加到聚偏氟乙烯(PVDF)铸膜液中,通过涂覆-浸没沉淀相转化法制得PVDF/SiO_2杂化内支撑型中空纤维膜,考察了铸膜液中不同SiO_2含量对膜性能的影响。结果表明,PET编织管的加入,使中空纤维膜的拉伸强度超过50 MPa。随着纳米SiO_2含量增加,膜的接触角从78.5°降至60.6°,杂化膜的纯水通量增大、孔隙率提高。X射线衍射仪图谱表明,SiO_2的加入未改变PVDF的主要晶型构成。当SiO_2的质量分数为1.5%时,杂化膜的纯水通量达到192.6 L/(m~2·h),孔隙率为68%,拥有了优异的过滤性能。  相似文献   

11.
以纳米二氧化硅(SiO_2)和水性聚氨酯(WPU)为原料,以水为分散剂,KH560和KH550为改性剂,采用喷涂工艺制备出SiO_2/WPU纳米复合涂层。研究了SiO_2粒度、SiO_2/WPU质量比、KH560改性SiO_2、及KH550改性WPU等因素对复合涂层疏水性能的影响。结果表明:采用粒度为30 nm的SiO_2、SiO_2/WPU质量比为1∶5、WPU与KH550质量比为10.6∶1时制备的SiO_2/WPU纳米复合涂层疏水效果最好,接触角达138°,从扫描电镜照片可以看出所制备的SiO_2/WPU涂层具有了与荷叶表面相似的微一纳米粗糙结构。  相似文献   

12.
以毛竹为原料,高压均质法制备纳米纤丝化纤维素(NFC),再采用溶胶―凝胶法制备NFC/二氧化硅(SiO_2)气凝胶。采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱(EDS)等对其进行表征,通过改变正硅酸乙酯/无水乙醇的体积比获得样品微观形貌较佳的反应工艺条件,并采用十八烷基三氯硅烷的正己烷溶液对NFC/SiO_2气凝胶进行疏水改性,用接触角测量仪测试改性NFC/SiO_2气凝胶的疏水性能。研究结果表明NFC/SiO_2气凝胶在正硅酸乙酯/无水乙醇体积比为1.25%时,二氧化硅复合效率高,且所获得的气凝胶形貌较好,二氧化硅以颗粒的形式附着在纳米纤丝化纤维素表面。改性NFC/SiO_2气凝胶接触角为132°,达到疏水状态。  相似文献   

13.
以二月桂酸二丁基锡为催化剂,用磷酸三苯酯表面改性纳米二氧化硅(SiO_2),制备了聚丙烯(PP)/表面改性纳米SiO_2复合材料。采用红外光谱仪、差示扫描量热仪、热重分析仪和万能材料试验机等进行表征。结果表明:有机磷改性后SiO_2粒子的表面羟基消失,有机磷的接枝率为87.71%,改性纳米SiO_2能够改善PP复合材料的热稳定性和阻燃性能。  相似文献   

14.
介绍了维生素B_2/二氧化硅/聚偏氟乙烯(VB_2/SiO_2/PVDF)复合材料薄膜的制备工艺和压电性能。研究发现,在PVDF溶液中添加VB_2粉末和纳米SiO_2颗粒,通过蒸发结晶制备成膜,采用高倍率单轴拉伸和高压极化的方法可增加复合材料中β相的含量,从而提高复合材料的压电性能。研究中分别使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)等方法对VB_2/SiO_2/PVDF薄膜进行测试,并基于悬臂梁振动平台对压电复合薄膜的性能进行了测试,分析了VB_2和SiO_2不同含量组合和悬臂梁振幅对开路电压的影响。结果表明,VB_2和SiO_2的含量同时为1%和1%时,复合材料薄膜的压电性能最优,其在1 000μ应变下可产生1.52 V的峰-峰值电压。  相似文献   

15.
采用纳米SiO_2粒子协同全氟硅烷(17-FAS)对PVDF平板膜进行表面改性,通过接触角仪、扫描电镜、X射线能谱及傅里叶变换红外光谱进行表征,并采用该材料用于膜蒸馏深度处理焦化废水。结果表明,改性后水和乙二醇的接触角分别为154.8°和137.0°,膜材料表现出了超疏水和疏油性;膜表面形成多级粗糙度结构且表面官能团发生变化,证明成功制备出SiO_2/17-FAS/PVDF复合膜材料。复合膜膜通量稳定,明显改善了原膜膜通量衰减(下降约41%)。复合膜出水中总有机碳的质量浓度从未改性前(10.0±1.3)mg/L降低至(2.0±0.3)mg/L,且色度、浊度、NH4+-N含量、UV254各指标均优于原膜出水水质。实验表明,该复合膜具有良好的抗污染性能,对膜蒸馏处理焦化废水有一定的应用潜力。  相似文献   

16.
《粘接》2016,(8)
采用γ-氨丙基三乙氧基硅烷(APTES)改性的有机化纳米SiO_2和2,2,3,4,4,4-甲基丙烯酸六氟丁酯(HFBMA)对水性聚氨酯改性,制备了改性水性聚氨酯(SiO_2/FWPU)复合胶粘剂。研究结果表明,当APTES用量为纳米SiO_2用量的50%、改性温度为35℃、反应时间为7 h,改性纳米SiO_2具有较好的改性效果,可用于WPU的改性。采用粒度分析仪、数字黏度计、拉力试验机、热重分析仪等仪器进行表征,研究了纳米SiO_2对SiO_2/FWPU的乳液性能、胶膜性能及其对非极性膜粘接性能的影响,研究发现,随着改性纳米SiO_2用量增加,乳液的稳定性降低,胶膜拉伸强度先增大后减小,断裂伸长率则不断减小。纳米SiO_2可提高胶粘剂的耐热性能,使胶粘剂在高温蒸煮条件下仍有很好的粘接性能。当纳米SiO_2用量为1.0%时,SiO_2/FWPU复合胶粘剂的综合性能最好,能满足复合软包装袋的需要。  相似文献   

17.
通过熔融共混挤出法制备聚乳酸(PLA)/聚己二酸-对苯二甲酸-丁二酯(PBAT)/改性纳米二氧化硅(SiO_2)复合材料,利用差示扫描量热仪(DSC)、X射线衍射仪(XRD)、旋转流变仪等仪器,对其结晶性能、流变特性等进行了研究。研究表明:随着改性纳米SiO_2填充量的增加,复合体系的熔融结晶温度(Tc)和熔融温度(Tm)逐渐降低,结晶度由26.81%增加到32.89%。对添加改性纳米SiO_2前后复合材料的流变性能进行了研究,并将线性流变学测试的结果与非线性流变学的结果进行了对比,考察Cox-merz关系式是否适用。  相似文献   

18.
随着膜分离技术在废水处理领域的不断深入,提高膜的抗污染性能已成为急需解决的问题。总结了近年来聚偏氟乙烯膜(PVDF)的无机纳米粒子改性材料,对改性后的复合膜处理含油废水的最新进展和应用进行归纳,并展望了改性PVDF膜处理含油废水的未来。  相似文献   

19.
采用自制的氮氧自由基改性三乙氧基硅烷,与纳米二氧化硅(SiO_2)在无水条件下进行缩合反应制得表面接枝氮氧自由基的SiO_2。采用热重分析研究了不同反应时间、反应温度以及IPTS-TEMPO用量对SiO_2表面接枝率的影响,并利用透射电镜对SiO_2表面接枝结果进行了表征。结果表明,当反应温度110℃,反应时间24 h,IPTS-TEMPO质量分数为50%时,纳米SiO_2的表面接枝率较高。改性后的SiO_2无粒子团聚现象。  相似文献   

20.
以天然高分子木薯淀粉为研究对象,低密度聚乙烯(LDPE)和纳米二氧化硅(SiO_2)为改性材料,甘油为增塑剂,通过熔融法制备了热塑性木薯淀粉(TPS)/LDPE/纳米SiO_2复合材料,研究了复合材料的塑化性能、力学性能、结晶性能、热稳定性和微观结构。结果表明:纳米SiO_2能提高TPS/LDPE复合材料塑化性能,更容易进行加工;随着纳米SiO_2用量的增加,复合材料的拉伸强度降低、断裂应变增加,复合材料的熔融焓、结晶度减小,热降解温度提高;纳米SiO_2的加入使得复合材料的球晶变得更细密,改变了复合材料的晶型;当纳米SiO_2用量为2份(质量份)时在复合材料中分散较好,但随着纳米SiO_2用量的增加会发生团聚现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号