首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strain of Aspergillus flavus isolated from an agricultural soil in Egypt produced a gluycoamylase which when purified had a molecular weight of 51,300 +/- 800 Daltons. The optimum pH for activity was 4 and the optimum temperature was 60 degrees C. The enzyme was stable at 70 degrees C for 15 min but denatured at 90 degrees C over 30 min. The Km value with soluble starch was 2.85 mg ml-1, and 10 mM HgCl2 inhibited the enzyme. It was possible to store the enzyme for at least 1 year at -20 degrees C without significant loss in activity.  相似文献   

2.
The factors involved in the pathogenesis of Bacillus cereus (B. cereus) in non-gastrointestinal diseases are poorly investigated. Some researchers suggest that B. cereus proteases may be involved in these illnesses. The aim of this work was to purify and characterize a protease isolated from a virulent strain of B. cereus to explain its assumptive damaging effect. The enzyme was purified in a four-step procedure involving ammonium sulfate fractionation, acetone precipitation, Bio-Gel filtration and column chromatography on DEAE-cellulose (DE-52 cellulose). The enzyme appeared homogenous using disc electrophoresis. The specific activity of the protease was 72 U/mg of protein. The enzyme was shown to have a relative molecular mass of 29 kDa. The protease was most active at pH 7.0 and 40 degrees C with haemoglobin as the substrate. The enzyme was made completely inactive by ethylenediaminetetraacetic acid (EDTA), beta-mercaptoethanol, dithiothreitol (DTT) and benzamidine (at a concentration of 1 mM) and by diisopropylfluorophosphate (DIPF), L-cysteine, L-histidine, 1,10-phenanthroline (at a concentration of 10 mM). Divalent cations, especially Ca2+ increased enzyme activity. The enzyme hydrolysed haemoglobin, albumin and casein as the substrates. With haemoglobin and albumin as the substrates Michaelis-Menten kinetics was observed. The obtained Km values were 86 +/- 40 microM (SD, n = 3) and 340 +/- 100 microM (SD, n = 3) for haemoglobin and albumin, respectively. The corresponding Vmax values were 1.26 +/- 0.1 (SD, n = 3) and 0.38 +/- 0.07 (SD, n = 3) mumol of tyrosine liberated per min, per ml, and per mg, while those for casein were not determined. It is concluded that this enzyme is a metal-chelator-sensitive, neutral protease damaging haemoglobin and albumin.  相似文献   

3.
The fructose-1,6-biphosphate aldolase (EC 4.1.2.13) from Staphylococcus aureus ATCC 12 600 was purified and biochemically investigated. It was found that this aldolase belongs to the class I type of aldolases since the fructose-1,6-bisphosphate cleavage activity was insensitivity to high levels of EDTA. Like class I aldolases of higher organisms, the S. aureus aldolase activity is inhibited on incubation with the substrate dihydroxyacetone-phosphate in the presence of NaBH4. Furthermore, the aldolase activity is not stimulated by monovalent or divalent cations. This enzyme exhibits an extreme stability to high temperature, acid and base. The purified enzyme is not activated after heating at 97 degrees C for 1.6 h. An incubation at 130 degrees C for 10 min is necessary to destroy irreversibly the activity of the aldolase. The optimal temperature for activity, however, is 37 degrees C. It is a monomer with a molecular weight of about 33,000 and exhibits a relatively broad pH optimum ranging over pH 7.5-9.0. Apart from fructose 1,6-bisphosphate as substrate (Km = 0.045 mM), this aldolase also revealed activity with fructose 1-phosphate (Km = 25 mM). The pH of the isoelectric point lies between 3.95 and 4.25.  相似文献   

4.
An extracellular beta-glucosidase from Fusarium oxysporum was purified to homogeneity by gel-filtration and ion-exchange chromatographies. The enzyme, a monomeric protein of 110 kDa, was maximally active at pH 5.0-6.0 and at 60 degrees C. It hydrolysed 1-->4-linked aryl-beta-glucosides and 1-->4-linked, 1-->3-linked and 1-->6-linked beta-glucosides. The apparent Km and kcat values for p-nitrophenyl beta-D-glucopyranoside (4-NpGlcp) and cellobiose were 0.093 (Km), 1.07 mM (kcat) and 1802 (Km), 461.5 min-1 (kcat), respectively. Glucose and gluconolactone inhibited the enzyme competitively with Ki values of 2.05 mM and 3.03 microM, respectively. Alcohols activated the enzyme; butanol showed maximum effect (2.2-fold at 0.5 M) while methanol increased the activity by 1.4-fold at 1 M. The enzyme catalysed the synthesis of methylglucosides, ethylglucoside and propylglucosides, as well as trisaccharides in the presence of different alcohols and disaccharides, respectively. In addition, the enzyme hydrolysed the unsubstituted and methylumbelliferyl cello-oligosaccharides [MeUmb(Glc)n] but the rate of hydrolysis decreased with increasing chain length. Analysis of products released from MeUmb(Glc)n as a function of time revealed that the enzyme attacked these substrates in a stepwise manner and from both ends. Thus, beta-glucosidase from F. oxysporum, with the above interesting properties, could be of commercial interest.  相似文献   

5.
1. Triosephosphate isomerase (D-glyceraldehyde-3-phosphate ketoisomerase, EC 5.3.1.1) from human skeletal muscle was purified to homogeneity and crystallized. The crystalline enzyme preparation was resolved on polyacrylamide-gel electrophoresis into three isoenzymes. 2. The molecular weight of the enzyme estimated by gel filtration method was found to be 57,400 +/- 3000. Molecular weight determination under dissociation conditions indicated a dimeric subunit structure of the enzyme. 3. The apparent Km for D-glyceraldehyde-3-phosphate as substrate is 0.34 mM, and for dihydroxyacetone phosphate, 0.61 mM. Vmax of the reaction is, respectively, 7200 and 660 units/mg protein at 25 degrees C and pH 7.5. 4. Molecular and kinetic properties of triosephosphate isomerase from human skeletal muscle are very similar to those of rabbit muscle enzyme.  相似文献   

6.
Inorganic pyrophosphatase (EC 3.6.1.1.) has been isolated from the archaebacterium Methanobacterium thermoautotrophicum (strain delta H). The enzyme was purified 850-fold in three steps to electrophoretic homogeneity. The soluble pyrophosphatase consists of four identical subunits: the molecular mass of the native enzyme estimated by gel filtration was approx. 100 kDa and denaturing polyacrylamide gel electrophoresis gave a single band of 25 kDa. The enzyme also may occur as an active dimer formed by dissociation of the tetramer. The pyrophosphate showed an optimal activity at 70 degrees C and a pH of 7.7 (at 60 degrees C) and was not influenced by dithiothreitol, sodium dithionite or potassium chloride. The enzyme was very specific for pyrophosphate (PPi) and Mg2+. Magnesium could be partially replaced by Co2+ (15%). The reaction was inhibited for 60% by 1 mM Mn2+ in the presence of 24 mM Mg2+. In addition, the enzyme was inhibited by potassium fluoride (50% at 0.9 mM). Kinetic analysis revealed positive co-operativity for both Mg2+ and PPi with Hill coefficients of 3.3 and 2.0, respectively. Under the experimental conditions at which the enzyme was present as its dimer, the apparent Km of PPi and magnesium were determined and were approx. 0.16 mM and 4.9 mM, respectively; Vmax was estimated at about 570 U/mg.  相似文献   

7.
We purified and characterized a thermophilic beta-galactosidase from Thermus sp. A4 isolated from the Atagawa hot spring (Shizuoka, Japan). The enzyme was monomeric, and its molecular mass was estimated to be 75 kDa by SDS-polyacrylamide gel electrophoresis. The enzyme was extremely thermostable and retained its full activity after incubation at 70 degrees C for 20 h. The Km observed were 5.9 mM for ortho-nitrophenyl beta-D-galactopyranoside and 19 mM for lactose. We cloned and analyzed the complete sequence of the gene encoding this enzyme. It was found to consist of 645 amino acid residues. We propose that this enzyme and seven other unclassified beta-galactosidases are new members of family 42 of the glycosyl hydrolases.  相似文献   

8.
The nucleotide sequence of both the bgaA gene, coding for a thermostable beta-galactosidase of Thermus sp. strain T2, and its flanking regions was determined. The deduced amino acid sequence of the enzyme predicts a polypeptide of 645 amino acids (Mr, 73,595). Comparative analysis of the open reading frames located in the flanking regions of the bgaA gene revealed that they might encode proteins involved in the transport and hydrolysis of sugars. The observed homology between the deduced amino acid sequences of BgaA and the beta-galactosidase of Bacillus stearothermophilus allows us to classify the new enzyme within family 42 of glycosyl hydrolases. BgaA was overexpressed in its active form in Escherichia coli, but more interestingly, an active chimeric beta-galactosidase was constructed by fusing the BgaA protein to the choline-binding domain of the major pneumococcal autolysin. This chimera illustrates a novel approach for producing an active and thermostable hybrid enzyme that can be purified in a single step by affinity chromatography on DEAE-cellulose, retaining the catalytic properties of the native enzyme. The chimeric enzyme showed a specific activity of 191,000 U/mg at 70 degrees C and a Km value of 1.6 mM with o-nitrophenyl-beta-D-galactopyranoside as a substrate, and it retained 50% of its initial activity after 1 h of incubation at 70 degrees C.  相似文献   

9.
A novel cephalosporin esterase (EC 3.1.1.41) from Rhodosporidium toruloides was purified to gel electrophoretic homogeneity. The enzyme is a glycoprotein with a molecular mass of 80 kDa. Upon deglycosylation, several forms of the enzyme were observed with a molecular mass range between 60 and 66 kDa. The isoelectric point of the enzyme is approximately 5.6, with the pH optimum for activity occurring at 6.0. The optimal activity of the enzyme occurred at 25 degrees C, with the enzyme rapidly losing activity at temperatures above 25 degrees C. The enzyme deacetylated a variety of cephalosporin derivatives, including cephalosporin C; the Km for this substrate is 51.8 mM, and the Vmax is 7.9 mumol/min/mg. In addition to cephalosporins, the enzyme hydrolyzed short-chain p-nitrophenyl esters, with the activity decreasing with increasing ester chain length. The enzyme also has the ability to acetylate desacetyl cephalosporins in high yields under mild conditions in the presence of various acetyl donors. A comparison of the physical properties of the esterase with those of other well-characterized cephalosporin esterases indicates that the enzyme is unique in this class.  相似文献   

10.
Purification and some properties of human erythrocyte hexokinase   总被引:2,自引:0,他引:2  
1. Human erythrocyte hexokinase (ADP:D-hexose 6-phosphotransferase, EC 2.7.1.1) was purified 50 000--100 000-fold with a final specific activity of about 25--50 units/mg protein using gel-filtration, ion-exchange chromatography and affinity chromagraphy. 2. After isoelectrofocusing ofthe preparation one major protein band could be detected besides a minor band. THe isoelectric point of the major protein band was found to be 4.7. 3. After purification the enzyme could be stabilized in a medium containing inorganic phosphate, glucose, glycerol and mercaptoethanol. 4. The molecular weight was determined by gel-filtration and was found to be 132 000+/-8000. 5. The enzyme shows a broad pH optimum ranging from 7.0 to 8.4. 6. The kinetic behavior of the purified enzyme at 37 degrees C was somewhat different from the normal Michaelis-Menten kinetics due to its instability. The affinity constants were 0.048--0.080 mM for glucose and 0.57--1.0 mM for Mg-ATP. 7. The enzyme was specific for Mg- ATP as the nucleotide substrate. Mg-UTP, Mg-ITP,Mg-GTP and Mg-CTP were not converted to corresponding diphosphates. Several hexoses could be phosphorylated by the enzyme. Mannose could be phosphorylated at the same rate as glucose, although the affinity for the enzyme was lower (5m=0.60mM). Much lower rates and lower affinities were found with 2-deoxy-D-glucose (5m=1.0mM), D(+)-glucosamine (5m=4.5 mM) and fructose (5m=10 mM). N-acetyl-D-glucosamine , galactose andsorbose were not phosphorylated at all.  相似文献   

11.
Pyrococcus furiosus is an anaerobic archaeon that grows optimally at 100 degrees C by the fermentation of carbohydrates yielding acetate, CO2, and H2 as the primary products. If elemental sulfur (S0) or polysulfide is added to the growth medium, H2S is also produced. The cytoplasmic hydrogenase of P. furiosus, which is responsible for H2 production with ferredoxin as the electron donor, has been shown to also catalyze the reduction of polysulfide to H2S (K. Ma, R. N. Schicho, R. M. Kelly, and M. W. W. Adams, Proc. Natl. Acad. Sci. USA 90:5341-5344, 1993). From the cytoplasm of this organism, we have now purified an enzyme, sulfide dehydrogenase (SuDH), which catalyzes the reduction of polysulfide to H2S with NADPH as the electron donor. SuDH is a heterodimer with subunits of 52,000 and 29,000 Da. SuDH contains flavin and approximately 11 iron and 6 acid-labile sulfide atoms per mol, but no other metals were detected. Analysis of the enzyme by electron paramagnetic resonance spectroscopy indicated the presence of four iron-sulfur centers, one of which was specifically reduced by NADPH. SuDH has a half-life at 95 degrees C of about 12 h and shows a 50% increase in activity after 12 h at 82 degrees C. The pure enzyme has a specific activity of 7 mumol of H2S produced.min-1.mg of protein-1 at 80 degrees C with polysulfide (1.2 mM) and NADPH (0.4 mM) as substrates. The apparent Km values were 1.25 mM and 11 microM, respectively. NADH was not utilized as an electron donor for polysulfide reduction. P. furiosus rubredoxin (K(m) = 1.6 microM) also functioned as an electron acceptor for SuDH, and SuDH catalyzed the reduction of NADP with reduced P. furiosus ferredoxin (K(m) = 0.7 microM) as an electron donor. The multiple activities of SuDH and its proposed role in the metabolism of S(o) and polysulfide are discussed.  相似文献   

12.
A carboxylesterase [2,3,4,6-tetra-O-acetyl-1-[(N-acetyl-N-phenylamino)oxy]-1-deoxy-beta-D-g lucopyranoside (GPA) O-deacetylase] from a culture product of Aspergillus oryzae (Taka diastase) was purified 8500-fold with a yield of 3%. The molecular mass of the purified enzyme was shown to be 35 +/- 1 kDa by SDS/PAGE. The enzyme shows a selective O-deacetylation activity of GPA to give the fully O-deacetylated glucoside. Among the substrates tested, the enzyme did not hydrolyze benzoyl and phenylacetyl esters and acetamides. In the hydrolysis of p-nitrophenyl esters, the acyl preference is acetyl > propionyl > butyryl, judging from the Vmax/Km values. A good correlation between log(Vmax/Km) and the Taft's Es constant of the alkyl group of the acyl moiety was obtained. The optimum pH was around 7.3 at 37 degrees C, and the enzyme was inhibited by mercuric chloride, p-chloromercuribenzoate and diisopropyl fluorophosphate. This enzyme should be useful for the selective removal of acetyl groups that serve to protect hydroxyl groups during carbohydrate synthesis.  相似文献   

13.
N-acetyltransferase (NAT) activity was determined by incubation of purified Enterobacter aerogenes enzyme with 2-aminofluorene (2-AF) as the substrate, followed by high pressure liquid chromatography assays. The NAT activity from E. aerogenes was 0.58 +/- 0.08 nmol/min/mg protein for 2-AF. The values of apparent K(m) and Vmax were 0.72 +/- 0.14 mM and 2.45 +/- 0.29 nmol/min/mg protein, respectively, for 2-AF. The optimal pH value for the enzyme activity was 7.5 for the 2-AF tested. The optimal temperature for enzyme activity was 37 degrees C for the 2-AF substrate. The molecular weight of NAT from E. aerogenes was 44.9 kD. Among a series of divalent cations and salts, Zn2+, Ca2+, and Fe2+ were demonstrated to be the most potent protease inhibitors, and only ethylenediaminetetraacetic acid significantly protected the NAT. Iodoacetamide, in contrast to other agents, markedly inhibited NAT.  相似文献   

14.
A color-variant strain of Aureobasidium pullulans (NRRL Y-12974) produced alpha-L-arabinofuranosidase (alpha-L-AFase) when grown in liquid culture on oat spelt xylan. An extracellular alpha-L-AFase was purified 215-fold to homogeneity from the culture supernatant by ammonium sulfate treatment, DEAE Bio-Gel A agarose column chromatography, gel filtration on a Bio-Gel A-0.5m column, arabinan-Sepharose 6B affinity chromatography, and SP-Sephadex C-50 column chromatography. The purified enzyme had a native molecular weight of 210,000 and was composed of two equal subunits. It had a half-life of 8 h at 75 degrees C, displayed optimal activity at 75 degrees C and pH 4.0 to 4.5, and had a specific activity of 21.48 mumol min-1. mg-1 of protein against p-nitrophenyl-alpha-L-arabinofuranoside (pNP alpha AF). The purified alpha-L-AFase readily hydrolyzed arabinan and debranched arabinan and released arabinose from arabinoxylans but was inactive against arabinogalactan. The K(m) values of the enzyme for the hydrolysis of pNP alpha AF, arabinan, and debranched arabinan at 75 degrees C and pH 4.5 were 0.26 mM, 2.14 mg/ml, and 3.25 mg/ml, respectively. The alpha-L-AFase activity was not inhibited at all by L-arabinose (1.2 M). The enzyme did not require a metal ion for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM).  相似文献   

15.
In the yeast Saccharomyces cerevisiae, choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) is the product of the CKI gene. Choline kinase catalyzes the committed step in the synthesis of phosphatidylcholine by the CDP-choline pathway. The yeast enzyme was overexpressed 106-fold in Sf-9 insect cells and purified 71.2-fold to homogeneity from the cytosolic fraction by chromatography with concanavalin A, Affi-Gel Blue, and Mono Q. The N-terminal amino acid sequence of purified choline kinase matched perfectly with the deduced sequence of the CKI gene. The minimum subunit molecular mass (73 kDa) of purified choline kinase was in good agreement with the predicted size (66.3 kDa) of the CKI gene product. Native choline kinase existed in oligomeric structures of dimers, tetramers, and octomers. The amounts of the tetrameric and octomeric forms increased in the presence of the substrate ATP. Antibodies were raised against the purified enzyme and were used to identify choline kinase in insect cells and in S. cerevisiae. Maximum choline kinase activity was dependent on Mg2+ ions (10 mM) at pH 9.5 and at 30 degrees C. The equilibrium constant (0.2) for the reaction indicated that the reverse reaction was favored in vitro. The activation energy for the reaction was 6.26 kcal/mol, and the enzyme was labile above 30 degrees C. Choline kinase exhibited saturation kinetics with respect to choline and positive cooperative kinetics with respect to ATP (n = 1.4-2.3). Results of the kinetic experiments indicated that the enzyme catalyzes a sequential Bi Bi reaction. The Vmax for the reaction was 138.7 micromol/min/mg, and the Km values for choline and ATP were 0.27 mM and 90 microM, respectively. The turnover number per choline kinase subunit was 153 s-1. Ethanolamine was a poor substrate for the purified choline kinase, and it was also poor inhibitor of choline kinase activity. ADP inhibited choline kinase activity (IC50 = 0.32 mM) in a positive cooperative manner (n = 1.5), and the mechanism of inhibition with respect to ATP and choline was complex. The regulation of choline kinase activity by ATP and ADP may be physiologically relevant.  相似文献   

16.
A novel enzyme that catalyzes the disproportionation of chlorite into chloride and oxygen was purified from a gram-negative bacterium, strain GR-1 to homogeneity. A four-step purification procedure comprising Q-Sepharose, hydroxyapatite, and phenyl-Superose chromatography and ultrafiltration resulted in a 13.7-fold purified enzyme with a final specific activity of 2.0 mmol min-1 (mg protein)-1. The dismutase obeyed Michaelis-Menten kinetics. The Vmax and Km calculated for chlorite were 2,200 U (mg protein)-1 and 170 microM, respectively. Dismutase activity was inhibited by hydroxylamine, cyanide, and azide, but not by 3-amino-1,2,4-triazole. Chlorite dismutase had a molecular mass of 140 kDa and consisted of four 32-kDa subunits. The enzyme was red-colored and had a Soret peak at 392 nm. Per subunit, it contained 0.9 molecule of protoheme IX and 0.7 molecule of iron. Chlorite dismutase displayed maxima for activity at pH 6.0 and 30 degrees C.  相似文献   

17.
Aspergillus oryzae was found to secrete two distinct beta-glucosidases when it was grown in liquid culture on various substrates. The major form had a molecular mass of 130 kDa and was highly inhibited by glucose. The minor form, which was induced most effectively on quercetin (3,3',4',5,7-pentahydroxyflavone)-rich medium, represented no more than 18% of total beta-glucosidase activity but exhibited a high tolerance to glucose inhibition. This highly glucose-tolerant beta-glucosidase (designated HGT-BG) was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and anion-exchange chromatography. HGT-BG is a monomeric protein with an apparent molecular mass of 43 kDa and a pI of 4.2 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing polyacrylamide gel electrophoresis, respectively. Using p-nitrophenyl-beta-D-glucoside as the substrate, we found that the enzyme was optimally active at 50 degreesC and pH 5.0 and had a specific activity of 1,066 micromol min-1 mg of protein-1 and a Km of 0.55 mM under these conditions. The enzyme is particularly resistant to inhibition by glucose (Ki, 1. 36 M) or glucono-delta-lactone (Ki, 12.5 mM), another powerful beta-glucosidase inhibitor present in wine. A comparison of the enzyme activities on various glycosidic substrates indicated that HGT-BG is a broad-specificity type of fungal beta-glucosidase. It exhibits exoglucanase activity and hydrolyzes (1-->3)- and (1-->6)-beta-glucosidic linkages most effectively. This enzyme was able to release flavor compounds, such as geraniol, nerol, and linalol, from the corresponding monoterpenyl-beta-D-glucosides in a grape must (pH 2.9, 90 g of glucose liter-1). Other flavor precursors (benzyl- and 2-phenylethyl-beta-D-glucosides) and prunin (4',5,7-trihydroxyflavanone-7-glucoside), which contribute to the bitterness of citrus juices, are also substrates of the enzyme. Thus, this novel beta-glucosidase is of great potential interest in wine and fruit juice processing because it releases aromatic compounds from flavorless glucosidic precursors.  相似文献   

18.
An enzyme with alpha-L-rhamnosidase activity was purified by anion exchange chromatography from an Aspergillus niger commercial preparation. The alpha-L-rhamnosidase was shown to be N-glycosylated, and had a molecular mass of 85 kD on sodium dodecylsulfate-polyacrylamide gel electrophoresis of which approximately 12% was contributed by carbohydrate. The enzyme was optimally active at pH 4.5 and 65 degrees C. When tested towards p-nitrophenyl-alpha-L-rhamnopyranoside it showed Km and Vmax values of 2.9 mM and 20.6 U mg-1, respectively whereas it was inhibited competitively by L-rhamnose (Ki 3.5 mM). Substrate specificity studies showed alpha-L-rhamnosidase to be active both on alpha-1,2 and alpha-1,6 linkages to beta-D-glucose. Moreover, the enzyme was able to release L-rhamnose from geranyl-beta-D-rutinoside and 2-phenylethyl-beta-D-rutinoside.  相似文献   

19.
Glucuronidation of drugs represents a major pathway of human drug metabolism. Numerous studies show that the glucuronides formed can accumulate during chronic therapy and/or have direct pharmacological activity. In both cases, cleavage of the glucuronide by human beta-glucuronidase (beta-Gluc) would release the parent compound, thereby modifying drug disposition. Variability in expression of beta-Gluc could therefore be a confounding factor for interindividual variability in drug disposition both in the setting of accumulating glucuronides or for the use of glucuronides as prodrugs, such as the nontoxic glucuronide-spacer derivative of doxorubicin (Dox-S-G). We therefore investigated expression and function of beta-Gluc in human liver (n = 30) and human kidney (n = 18). Cleavage of the model compound 4-methylumbelliferyl-beta-D-glucuronide (MUG) revealed a wide range of activities in liver (0.32-1.85 mumol/mg/h, mean value 0.87 +/- 0.34 mumol/mg/h) and kidney (0.07-1.00 mumol/mg/h, mean 0.39 +/- 0.21 mumol/mg/h), which followed a log normal distribution. Variable enzyme activity was closely correlated to enzyme expression as assessed by Western blotting (r = 0.80, P < .001 and r = 0.71, P < .05 for liver and kidney, respectively). Glycyrrhizin (Ki = 470 and 570 microM), estradiol 3-glucuronide (Ki = 0.9 and 1.2 mM) and paracetamol glucuronide (Ki = 1.6 and 2 mM) were found to inhibit beta-Gluc activity competitively in liver and kidney, respectively. Enzyme kinetics were investigated in detail for MUG and Dox-S-G. Whereas MUG followed monophasic Michaelis-Menten kinetics in liver (K(m) = 1.32 +/- 0.25 mM, Vmax = 1201 +/- 462 nmol/mg/h, n = 3) and kidney (K(m) = 1.04 +/- 0.05 mM, Vmax = 521 +/- 267 nmol/mg/h, n = 3), cleavage of Dox-S-G was best described by the Hill equation, which indicated a cooperative substrate binding pattern of Dox-S-G. In summary, beta-Gluc function shows wide interindividual variability in human liver and kidney that is due to different steady-state levels of the enzyme. Moreover, enzyme kinetics are substrate-dependent, with Dox-S-G showing a cooperative binding. These data indicate the possibility of wide interindividual variability in beta-Gluc-mediated cleavage of drug glucuronides in the human.  相似文献   

20.
Phospholipase D (E.C. 3.1.4.4.) was detected in isolated bovine rod outer segments (ROS) and its properties determined. The enzyme activity was assayed using either a sonicated microdispersion of 1,2-diacyl-sn-[2(3)H]glycerol-3-phosphocholine (PC), or [14C]ethanol. Using [3H]PC and ethanol as a substrate, we were able to detect the hydrolytic properties as well as the transphosphatidylation reaction catalyzed by phospholipase D (PLD): formation of [3H]phosphatidic acid and phosphatidylethanol [3H]PtdEt; whereas with [14C]ethanol or [3H]glycerol in the absence of exogenous PC, only transphosphatidylation reactions were detected (formation of [14C]PtdEt or [3H]phosphatidylglycerol, respectively). The use of varying concentrations of [3H]PC and 400 mM of ethanol gave an apparent Km value for PC of 0.51 mM and a Vmax value of 111 nmol x h(-1) x (mg protein)(-1). The activity was linear up to 60 min of incubation and up to 0.2 mg of protein. The optimal ethanol concentration was determined to be 400 mM, with an apparent Km of 202 mM and a Vmax value for ethanol of 125 nmol x h(-1) x (mg protein)(-1). A clear pH optimum was observed around 7. PLD activity was increased in the presence of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate or sodium deoxycholate and inhibited with Triton X-100. The enzyme activity was also activated in the presence of Ca2+ or Mg2+ (1 mM) although these ions were not required for measuring PLD activity. The high specific activity of PLD found in purified ROS compared to the activity found in other subcellular fractions of the bovine retina suggests that this enzymatic activity is native to ROS. The present report is the first evidence of PLD activity associated with photoreceptor ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号