首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A self-incompatible (SI) line, S-1300, and its maintainer 97-wen135, a self-compatible (SC) line, were used to study the inheritance of maintenance for self-incompatibility in B. napus. The ratio of SI plants to SC plants from S-1300 × 97-wen135 F2 and (S-1300 × 97-wen135) × 97-wen135 was 346:260 and 249:232, fitting the expected ratio of 9:7 and 1:1, respectively. Based on these observations, here we propose a genetic model in which two independent loci, S locus and S suppressor locus (sp), are predicted to control the inheritance of maintenance for self-incompatibility in B. napus. The genotypes of S-1300 and 97-wen135 are S 1300 S 1300 sp 1300 sp 1300 and S 135 S 135 sp 135 sp 135 , respectively. S 135 is dominant to S 1300 , but coexistence of sp 1300 and sp 135 fails to suppress S locus. Both S 1300 and S 135 can be suppressed by sp 135 , while sp 1300 can suppress S 135 but not S 1300 . The model contains two characteristics: that a dominant S locus exists in self-compatible B. napus, and that co-suppression will occur when sp loci are heterozygous. The model has been validated by the segregation of S phenotypes in the (S-1300 × 97-wen135) × S-1300, the progenies of SC S-1300 × 97-wen135 F2 plants and DH population developed from S-1300 × 97-wen135 F1. This is the first study to report co-suppression of S suppressor loci in B. napus. The genetic model will be very useful for developing molecular markers linked to maintenance for self-incompatibility and for dissecting the mechanism of SI/SC in B. napus.  相似文献   

2.
Using three varieties of Brassica rapa, cv. Hauarad (accession 708), cv. Maoshan-3 (714) and cv. Youbai (715), as the maternal plants and one variety of B. oleracea cv. Jingfeng-1 (6012) as the paternal plant, crosses were made to produce interspecific hybrids through ovary culture techniques. A better response of seed formation was observed when ovaries were cultured in vitro at 9–12 days after pollination on the basal MS and B5 media supplemented with 6-benzylaminopurine (BA) and naphthylacetic acid (NAA). The best response was observed for cross 714×6012 with the rate of seeds per ovary reaching 43.0%. Seeds for cross 715×6012 showed the best germination response (66.7%) on the regeneration medium (MS+1.0 mg l–1 BA+0.05 mg l–1 NAA). In all three cross combinations, good response in terms of root number and length of plants was observed on the root induction medium (MS+1.0 mg l–1 BA+0.1 mg l–1 NAA). A better response was observed for the regenerated plants cultured for 14 days than for 7 days. The ovary-derived plants with well-developed root system were hardened for 8 days and their survival rate reached over 80%. Cytological studies showed that the chromosome number of all plants tested was 19 (the sum of both parents), indicating that these regenerated plants were all true hybrids of B. rapa (n = 10) × B. oleracea (n = 9). The regenerated plants were doubled with colchicine treatment, and the best response in the crosses 708×6012, 714×6012 and 715×6012 was observed when treated with 170 mg l–1 colchicine for up to 30 h and their doubling frequency reached 52, 56 and 62%, respectively.  相似文献   

3.
Self-incompatibility (SI) is a widespread mechanism in flowering plants that promotes outbreeding and thereby increases genetic diversity. Recognition specificity in Brassica is achieved by the interaction of the female determinant S-receptor kinase (SRK) and its ligand, the male determinant S-locus protein 11 (SP11). The interaction between SP11 and SRK triggers the signaling cascade in an S-haplotype-specific manner and results in the rejection of self-pollen, but the signal components involved are still not well characterized. S haplotypes are widespread in self-compatible amphidiploid B. napus, and the interaction of heterozygous S haplotypes causes the loss of SI. This review highlights the recent advances made towards understanding the genetic analysis, distribution, and evolution of S haplotypes, the signal factors, and the potential of SI in B. napus hybrid breeding program.  相似文献   

4.
A triploid hybrid with an ABC genome constitution, produced from an interspecific cross between Brassica napus (AACC genome) and B. nigra (BB genome), was used as source material for chromosome doubling. Two approaches were undertaken for the production of hexaploids: firstly, by self-pollination and open-pollination of the triploid hybrid; and secondly, by application of colchicine to axillary meristems of triploid plants. Sixteen seeds were harvested from triploid plants and two seedlings were confirmed to be hexaploids with 54 chromosomes. Pollen viability increased from 13% in triploids to a maximum of 49% in hexaploids. Petal length increased from 1.3 cm (triploid) to 1.9 cm and 1.8 cm in the two hexaploids and longest stamen length increased from 0.9 cm (triploid) to 1.1 cm in the hexaploids. Pollen grains were longer in hexaploids (43.7 and 46.3 μm) compared to the triploid (25.4 μm). A few aneuploid offsprings were also observed, with chromosome number ranging from 34 to 48. This study shows that trigenomic hexaploids can be produced in Brassica through interspecific hybridisation of B. napus and B. nigra followed by colchicine treatment.  相似文献   

5.
The results are presented of two single seed descent (SSD) breeding programmes for swedes (Brassica napus L. var. napobrassica Peterm). The first programme produced cultivar Virtue and was done as part of a research programme on heterosis. It involved the production and trialling in 1991 of 95 F6 families from a single cross made in 1985 between lines derived from cultivars Criffel and Marian. Six F6 families were mass multiplied in polythene tunnels in 1992, using blowflies as pollinators, and trialled in 1993 and 1994 before Virtue was entered into National List (NL) trials in 1995. The second programme was done as a commercially funded breeding programme and involved the production and trialling in 1999 of 1,037 F6 families from 15 crosses made in 1993. Fifty F6 families were advanced to F7 in a glasshouse in 2000 and assessed in 2001. Six F7 families were mass multiplied in polythene tunnels in 2002 and trialled in 2003. Two cultivars, Gowrie and Lomond, from the cross between Airlie and Invitation, were produced from the programme and entered NL trials in 2004. The SSD was traditional in the sense that each advanced family was descended from a different F2 plant without selection and a glasshouse was used for the selfing generations. However, it differed from the schemes that have been operated for soybean and spring cereals in that it was not possible to grow two or three generations a year because of the vernalization requirements of swedes, and it was not possible to grow a large number of plants at really high density because the inflorescences needed to be covered with Glassine bags to prevent cross pollination. In yield trials over 4 years, Gowrie had the highest dry-matter yield (12.59 t/ha) of the three new cultivars, out yielded Magres (11.28 t/ha) and other shopping swedes, but was not as high yielding as cultivar Kenmore (13.44 t/ha) which had been produced by pedigree inbreeding with selection. A modified SSD breeding scheme is recommended in which family selection is practised at F3.  相似文献   

6.
Meiotic nondisjunction during microsporegenesis can lead to aneuploid gametes formation and reduced pollen fertility in plants. This paper reports the prevalence of meiosis I nondisjunction in a resynthesized Brassica napus (AACC, 2n = 38) and its use for aneuploid production. Meiosis in the amphidiploids was characterized by high frequencies of univalents and multivalents per PMC at diakinesis/metaphase I and notably unbalanced chromosome segregations at anaphase I (AI). In all the plants observed, 18.95–44.3% of PMCs exhibited a segregation of 18:20 (n − 1:n + 1) at AI which was caused by nondisjunction of one bivalent or the distribution of two homologous univalents to the same pole. Meiosis proceeded normally after AI then, thus led to the formation of viable n − 1 and n + 1 gametes and high pollen fertility of these plants. Microspore culture was subsequently carried out using these plants in an attempt to isolate Brassica nullisomics. Four nullisomics (2n = 36), two nullihaploids (2n = 18) and one tetrasomic haploid (2n = 20) were identified cytologically and characterized morphologicaly and physiologically. Amplified fragment length polymorphism (AFLP) survey suggested that of the six nullisomics/nullihaploids, one nullihaploids lost one A-genome chromosome and the other five lost C genome chromosome(s). Altogether, different C-genome chromosomes were thought to have been lost in the nullisomics/nullihaploids. The mechanisms underlying the meiotic abnormalities and the implications of these B. napus nullisomics are discussed.  相似文献   

7.
Defining a minimum set of phenotypic traits that can integrate ontogeny and structure of Brassica napus L. is required for breeding and selection of high yielding and adapted genotypes to the short growing season of the upper Midwest, USA. Forward phenomics was instrumental in striking a balance between accuracy, timing and speed of capturing multi-level, spatiotemporal data at different scales of integration. Quantitative and categorical data digitally recorded, measured or scored on whole canopies, single plants, single leaves, and single siliques; and on random mature seed samples of entries in a phenotyping nursery of B. napus were used to identify plant traits that can integrate the effects of time (ontogeny) and space (architecture) on oil%, and to develop a multilevel-multitrait protocol based on field and laboratory characterization of phenotypic and agronomic data while accounting for fixed and random sources of variation when interpreting components of phenotypic variance. Traits conferring tolerance to low temperatures during germination and early seedling growth included fast emergence, early vigor, early flowering combined with short duration of bolting-to-flowering, and early maturity. To approximate rapeseed yield potential in the upper Midwest, USA, genotypes with biomass?>?6.0 Mg ha?1, seed?>?3.5 Mg ha?1, oil?>?1.75 Mg ha?1 and protein yield?>?0.75 Mg ha?1 are envisioned. A subset of adaptive traits has been identified that can be combined in a selection index to develop a plant ideotype for B. napus.  相似文献   

8.
In a previously made cross Brassica napus cv. Oro (2n = 38) × Capsella bursa-pastoris (2n = 4x = 32), one F1 hybrid with 2n = 38 was totally male sterile. The hybrid contained no complete chromosomes from C. bursa-pastoris, but some specific AFLP (amplified fragment length polymorphism) bands of C. bursa-pastoris were detected. The hybrid was morphologically quite similar to ‘Oro’ except for smaller flowers with rudimentary stamens but normal pistils, and showed good seed-set after pollination by ‘Oro’ and other B. napus cultivars. The fertility segregation ratios (3:1, 1:1) in its progenies indicated that the male sterility was controlled by a single recessive gene. In the pollen mother cells of the male sterile hybrid, chromosome pairing and segregation were normal. Histological sectioning of its anthers showed that the tapetum was multiple layers and was hypertrophic from the stage of sporogenic cells, and that the tetrads were compressed by the vacuolated and disaggregated tapetum and no mature pollen grains were formed in anther sacs, thus resulting in male sterility. The possible mechanisms for the production of the male sterile hybrid and its potential in breeding are discussed.  相似文献   

9.
A leafy crop of Brassica napus L. called nabicol has been grown by farmers in northwestern Spain for many years, being an important horticultural product during the winter season. A collection of landraces of a Brassica napus leafy crop called nabicol is kept at ‘Misión Biológica de Galicia’ (CSIC-Spain) which can be used to search for desirable characteristics or to produce new commercial varieties to release in the market. The assessment of the mating system of nabicol landraces is particularly important to carry on adequate breeding and genetic conservation programs. The objective of this work is to estimate the outcrossing rate in nabicol under controlled pollinator conditions using SSRs. Pairs of flowering plants taken from nabicol landrace MBG-BRS0039 were placed in separated isolation cages and bumble bees (Bombus sp.) were released for facilitating the crosses between plants. A seed sample from each plant in the cross was analyzed by SSRs that were polymorphic in the parental population. We found that the crop is partially allogamous and that there is genetic variation for the outcrossing rate among individuals. Several consequences for the maintenance and genetic improvement of the crop are discussed. The existence of genetic variability for this trait is a valuable tool that will allow us to study the genetic mechanisms underlying the mating system of this crop.  相似文献   

10.
The oilseed Brassica rapa flowers and matures earlier than B. oleracea, as well as their amphidiploid B. napus. Therefore, earliness of B. rapa has been investigated as a source of variation for earliness in B. napus breeding programs. Variation for days to flower exists in B. oleracea; however, its earliest flowering variant B. alboglabra flowers 2–3 weeks later than B. napus. We hypothesized that the C genome of B. alboglabra carries alleles for early flowering which are different from the C-genome alleles of B. napus; and these alleles can be used for the improvement of B. napus. To test this, we examined flowering time in pedigree and DH populations from two B. napus × B. alboglabra crosses. A B. napus line with about a week earlier flowering than the B. napus parent was achieved through reconstitution of its C genome following pedigree selection. Introgression of the B. alboglabra allele in the early flowering pedigree lines is also evident from the presence of B. alboglabra-specific SSR alleles in this line. However, application of doubled haploidy failed to generate any line that flowered earlier than the B. napus parent, which is probably due to the difficulty of obtaining large numbers of euploid B. napus DH lines from this interspecific cross. Thus, we demonstrate that a trait of the diploid species, which apparently looks undesirable, might in fact be highly valuable for the improvement of amphidiploids; and knowledge from this research can also be applied for other traits.  相似文献   

11.
12.
The pol cytoplasmic male-sterility system has been widely used as a component for utilization of heterosis in Brassica napus and offers an attractive system for study on nuclear–mitochondrial interactions in plants. Genetic analyses have indicated that one dominant gene, Rfp, was required to achieve complete fertility restoration. As a first step toward cloning of this restorer gene, we attempted molecular mapping of the Rfp locus using the amplified fragment length polymorphism (AFLP) technique combined with bulked segregant analysis (BSA) method. A BC1 population segregating for Rfp gene was used for tagging. From the survey of 1,024 AFLP primer combinations, 13 linked AFLP markers were obtained and five of them were successfully converted into sequence characterized amplified region (SCAR) markers. A population of 193 plants was screened using these markers and the closest AFLP markers flanking Rfp were at the distances of 2.0 and 5.3 cM away, respectively. Further the AFLP or SCAR markers linked to the Rfp gene were integrated to one doubled-haploid (DH) population derived from the cross Quantum × No.2127-17 available in our laboratory, and Rfp gene was mapped on N18, which was the same as the previous report. These molecular markers will facilitate the marker-assisted selection (MAS) of pol CMS restorer lines.  相似文献   

13.
7–7365AB is a recessive genic male sterile (RGMS) two-type line, which can be applied in a three-line system with the interim-maintainer, 7–7365C. Fertility of this system is controlled by two duplicate dominant epistatic genes (Bn;Ms3 and Bn;Ms4) and one recessive epistatic inhibitor gene (Bn;rf). Therefore an individual with the genotype of Bn;ms3ms3ms4ms4Rf_ exhibits male sterility, whereas, plant with Bn;ms3ms3ms4ms4rfrf shows fertility because homozygosity at the Bn;rf locus (Bn;rfrf) can inhibit the expression of two recessive male sterile genes in homozygous Bn;ms3ms3ms4ms4 plant. A cross of 7–7365A (Bn;ms3ms3ms4ms4RfRf) and 7–7365C (Bn;ms3ms3ms4ms4rfrf) can generate a complete male sterile population served as a mother line with restorer in alternative strips for the multiplication of hybrid seeds. In the present study, molecular mapping of the Bn;Rf gene was performed in a BC1 population from the cross between 7–7365A and 7–7365C. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) technique was used to identify molecular markers linked to the gene of interest. From a survey of 768 primer combinations, seven AFLP markers were identified. The closest marker, XM5, was co-segregated with the Bn;Rf locus and successfully converted into a sequence characterized amplified region (SCAR) marker, designated as XSC5. Two flanking markers, XM3 and XM2, were 0.6 cM and 2.6 cM away from the target gene, respectively. XM1 was subsequently mapped on linkage group N7 using a doubled-haploid (DH) mapping population derived from the cross Tapidor × Ningyou7, available at IMSORB, UK. To further confirm the location of the Bn;Rf gene, additional simple sequence repeat (SSR) markers in linkage group N7 from the reference maps were screened in the BC1 population. Two SSR markers, CB10594 and BRMS018, showed polymorphisms in our mapping population. The molecular markers found in the present study will facilitate the selection of interim-maintainer.  相似文献   

14.
Broadening the genetic base of the C genome of Brassica napus canola by use of B. oleracea is important. In this study, the prospect of developing B. napus canola lines from B. napus?×?B. oleracea var. alboglabra, botrytis, italica and capitata crosses and the effect of backcrossing the F1’s to B. napus were investigated. The efficiency of the production of the F1’s varied depending on the B. oleracea variant used in the cross. Fertility of the F1 plants was low—produced, on average, about 0.7 F2 seeds per self-pollination and similar number of BC1 seeds on backcrossing to B. napus. The F3 population showed greater fertility than the BC1F2; however, this difference diminished with the advancement of generation. The advanced generation populations, whether derived from F2 or BC1, showed similar fertility and produced similar size silique with similar number of seeds per silique. Progeny of all F1’s and BC1’s stabilized into B. napus, although B. oleracea plant was expected, especially in the progeny of F1 (ACC) owing to elimination of the A chromosomes during meiosis. Segregation distortion for erucic acid alleles occurred in both F2 and BC1 resulting significantly fewer zero-erucic plants than expected; however, plants with?≤?15% erucic acid frequently yielded zero-erucic progeny. No consistent correlation between parent and progeny generation was found for seed glucosinolate content; however, selection for this trait was effective and B. napus canola lines were obtained from all crosses. Silique length showed positive correlation with seed set; the advanced generation populations, whether derived from F2 or BC1, were similar for these traits. SSR marker analysis showed that genetically diverse canola lines can be developed by using different variants of B. oleracea in B. napus?×?B. oleracea interspecific crosses.  相似文献   

15.
The objectives of this study were to quantify the components of genetic variance and the genetic effects, and to examine the genetic relationship of inbred lines extracted from various shrunken2 (sh2) breeding populations. Ten diverse inbred lines developed from sh2 genetic background, were crossed in half diallel. Parents and their F1 hybrids were evaluated at three environments. The parents were genotyped using 20 polymorphic simple sequence repeats (SSR). Agronomic and quality traits were analysed by a mixed linear model according to additive-dominance genetic model. Genetic effects were estimated using an adjusted unbiased prediction method. Additive variance was more important than dominance variance in the expression of traits related to ear aspects (husk ratio and percentage of ear filled) and eating quality (flavour and total soluble solids). For agronomic traits, however, dominance variance was more important than additive variance. The additive genetic correlation between flavour and tenderness was strong (r = 0.84, P < 0.01). Flavour, tenderness and kernel colour additive genetic effects were not correlated with yield related traits. Genetic distance (GD), estimated from SSR profiles on the basis of Jaccard’s similarity coefficient varied from 0.10 to 0.77 with an average of 0.56. Cluster analysis classified parents according to their pedigree relationships. In most studied traits, F1 performance was not associated with GD.  相似文献   

16.
The presence of excessive amounts of heavy metals such as arsenic in the environment is a problem in many parts of the world. Many countries e.g., Bangladesh are already severely affected by arsenic contamination of soil and groundwater. Phytoaccumulation is a method in which plants are used to uptake heavy metals from soil. The genus Brassica has many species that can efficiently accumulate arsenic. Despite many studies on phytoaccumulation, little is known about the genetics of phytoaccumulation of Brassica. This study investigated the genetic effect on phytoaccumulation of arsenic in Brassica juncea L. and attempted to identify any morphological trait(s) for phytoaccumulation. Two cultivars of B. juncea namely, B. juncea cv. Rai and B. juncea cv. BARI-11 were chosen as parents for the study. A set of their morphological characteristics were selected to evaluate their potential as marker(s) for phytoaccumulation. A single concentration, 15 ppm of arsenic was used to study the genetic effect on phytoaccumulation using quantitative genetics. The results revealed that phytoaccumulation of arsenic (by the root and shoot systems) is heritable in the broad sense and polygenic in nature. The stem diameter was also found to be heritable in the broad sense and path analysis indicated that it has a significant direct effect on the shoot uptake. It is concluded that phytoaccumulation of arsenic in B. juncea (cvs. Rai and BARI-11) is a genetic phenomenon and stem diameter may be a potential marker of phytoaccumulation of arsenic in B. juncea (cvs. Rai and BARI-11).  相似文献   

17.
Sclerotinia stem rot (SR) is one of the most devastating diseases of canola/rapeseed. Quantitative trait loci (QTL) analyses were carried out to identify loci responsible for resistance to SR in three doubled haploid DH populations (H1, H2 and H3). Petiole inoculation technique PIT was used to evaluate the all populations for resistance to SR. Genetic maps were developed using sequence related amplified polymorphism SRAP and simple sequence repeat SSR markers. Genetic maps of the H1 and H2 populations were developed using 508 and 478 markers, respectively. Previously published genetic map of the H3 population was also used in this study. The QTL analysis was carried out for each replicate separately as well as on the average of all the replicates. The numbers of identified QTL in each analysis varied from four to six in the H1 population, three to six in the H2 population and two to six in the H3 population. A number of common QTL were identified between the replicates of each population. Two common QTL were identified on linkage group A7 and C6 between the H1 and H3 populations and one QTL on A9 between the H2 and H3 populations. We are the first to report, identification of common QTL between different populations of Brassica napus.  相似文献   

18.
In the last decade, the cabbage seedpod weevil (Ceutorhynchus obstrictus (Marsham)) has become a major insect pest of canola (Brassica napus L.) in Canada reducing seed yields up to 35%. Therefore, the benefits of developing weevil resistant germplasm to canola breeders and the industry would reduce input costs, pesticide use, environmental degradation and increase yield. Yellow mustard (Sinapis alba L.) is resistant to C. obstrictus (CSPW), although the exact mechanism is not known (McCaffrey et al. 1999). A unique canola population was generated at the University of Guelph from a cross between B. napus and S. alba through embryo rescue and backcrossed to canola several times prior to double haploid (DH) production. Approximately one-half of this DH population had canola quality glucosinolate concentration (<16 μmol/g) and was used for further breeding. The hypothesis was that some DH progeny from this cross inherited resistance to CSPW from S. alba. Weevil infestation levels were assessed for the B. napus × S. alba BC2 and BC3 DH populations in the field over 7 years in Alberta where weevil pressure is strong to establish the resistant or susceptible status of these lines. The basic objectives for this study were to confirm field resistance in the B. napus × S. alba germplasm in Ontario and to identify any biochemical markers associated with resistance/susceptibility. Canola doubled haploid lines derived from BC2 or BC3 families were field screened for resistance (R) followed by chemical analysis of glucosinolates to detect biochemical polymorphisms correlated with CSPW resistance using High Performance Liquid Chromatography (HPLC). Two polymorphic peaks were found, one each, from extracts of upper cauline leaves and Stage 3 pod seed, with retention times of ~23 and 19 min, respectively. These HPLC peaks consistently correlated with larval infestation data and the peak differences between R and S DH lines were significant. Therefore, these two peaks can be considered as biochemical markers in this breeding germplasm and may play a role in rapid and early detection of CSPW resistance.  相似文献   

19.
The development of rapeseed cultivars (Brassica napus L.) with high oleic acid and low linolenic acid is highly desirable for food and industrial applications. In this study, the Korean rapeseed cultivar Tamla was used for ethyl methanesulfonate (EMS)-induced mutagenesis and seed oils were screened up to generation M7 for high oleate mutants. Two mutant populations (M7) with an average of approximately 76% oleic acid content were isolated. Yield components between two mutant populations and untreated Tamla plants were not substantially different, although the mutants in the vegetative stage were slightly smaller in size than Tamla. Genomic analyses of six fatty acid desaturase (four FAD2 and two FAD6) genes revealed that the elevated oleic acid content in the mutants is the result of single gene mutations. Changes in DNA sequence were observed in two genes out of six fatty acid desaturase (four FAD2 and two FAD6). FAD2-2 exhibited a 2-bp deletion in the upstream region of the gene in the two mutants, resulting in a severely truncated polypeptide (57 aa instead of 469 aa), while six point mutations in the other gene did not result in changes in the amino acid sequence. Based on these results, FAD2-2, an endoplasmic reticulum (ER) oleic acid desaturase, is affected in the mutants, resulting in a ~ 7% increase in oleic acid content in comparison to untreated Tamla plants. The induced mutants could be utilized for the development of high oleic oil rapeseed varieties and for regulatory studies of lipid metabolism in seed oils.  相似文献   

20.
Striga is an important parasitic weed causing substantial economic losses in cereal and legume crop production in sub-Saharan Africa. Integrated Striga management approaches such as a combined use of Striga resistant varieties and Fusarium oxysporum f.sp. strigae (FOS), a biocontrol agent of Striga, are an option to control the parasite and to boost sorghum productivity. Understanding host gene action influencing Striga resistance, with or without FOS treatment, is key to developing improved sorghum varieties with durable resistance and high yield. The objective of this study was to determine the gene action and inheritance of Striga resistance using genetically diverse populations of sorghum involving FOS treatment. Twelve sorghum parents selected for Striga resistance, FOS compatibility or superior agronomic performances were crossed using a bi-parental mating scheme. The selected male and female parents and their F1 progenies, backcross derivatives and the F2 segregants were field evaluated at three locations in Tanzania known for their severe Striga infestations using a lattice experimental design with two replications. The following data were collected and subjected to generation mean analysis (GMA): days-to-50% flowering (DFL), seed yield per plant (SYP) and number of Striga per plant (SN). GMA showed the preponderance of additive genetic action contributing to the total genetic variation in the evaluated sorghum populations. The additive genetic effect for DFL, SYP and SN, with and without FOS treatments, ranged from 72.02 to 86.65% and 41.49 to 95.44%, 75.62 to 91.42% and 71.83 to 91.89%, and 77.35 to 93.56% and 72.86 to 95.84%, in that order. The contribution of non-additive genetic effects was minimal and varied among generations. FOS application reduced DFL and SN and improved SYP in most of the tested sorghum populations. DFL of sorghum populations was reduced by a mean of 8 days under FOS treatment compared to the untreated control in families such as 675 × 654, AS435 × AS426 and 1563 × AS436. FOS treatment improved SYP with a mean of 6.44 g plant?1 in 3424 × 3993 and 3984 × 672. The numbers of Striga plants were reduced with a mean of 16 plants due to FOS treatment in the crosses of 675 × 654, 1563 × AS436, 4567 × AS424, and 3984 × 672. The study demonstrated that additive genes were predominantly responsible for the inheritance of Striga resistance in sorghum. Pure line cultivar development targeting reduced DFL, SN and high SYP in the selected populations may provide enhanced response to selection for integrated Striga management (ISM) programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号