首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
2.
3.
Dmitri Nassyrov  In-Ho Jung   《Calphad》2009,33(3):521-529
All available thermodynamic and phase diagram data of the Mg–Ge and Mg–Pb binary systems, and the Mg–Ge–Pb ternary system have been critically evaluated and all reliable data have been simultaneously optimized to obtain one set of model parameters for the Gibbs energies of the liquid and all solid phases as functions of composition and temperature. The liquid phase was modeled using the Modified Quasichemical Model in order to describe the strong ordering in Mg–Ge and Mg–Pb liquid. Mg2Ge–Mg2Pb solid solution phase was modeled with consideration of a solid miscibility gap. All calculations were performed using the FactSage thermochemical software.  相似文献   

4.
5.
F. Islam  M. Medraj   《Calphad》2005,29(4):289-302
The three binary systems Mg–Ni, Ca–Ni and Mg–Ca have been re-optimized. A self-consistent thermodynamic database of the Mg–Ni–Ca system is constructed by combining the optimized parameters of these three constituent binaries. Lattice stability values are not added to the pure elements Mg-hcp, Ni-fcc, Ca-fcc and Ca-bcc to construct this database. The Redlich–Kister polynomial model is used to describe the liquid and the terminal solid solution phases, and the sublattice model is used to describe the non-stoichiometric phase, in this system. The constructed database is used to calculate the three binary and the ternary systems. The calculated binary phase diagrams along with their thermodynamic properties such as Gibbs energy, enthalpy, entropy and activities are found to be in good agreement with experimental data from the literature. This is the first attempt to construct the ternary phase diagram of the Mg–Ni–Ca system. The established database for this system predicted three ternary eutectic, five ternary quasi-peritectic, two ternary peritectic and two saddle points.  相似文献   

6.
S. Wasiur-Rahman  M. Medraj   《Calphad》2009,33(3):584-598
A comprehensive thermodynamic database of the Al–Ca–Zn ternary system is presented for the first time. Critical assessment of the experimental data and re-optimization of the binary Al–Zn and Al–Ca systems have been performed. The optimized model parameters of the third binary system, Ca–Zn, are taken from the previous assessment of the Mg–Ca–Zn system by the same authors. All available as well as reliable experimental data both for the thermodynamic properties and phase boundaries are reproduced within experimental error limits. In the present assessment, the modified quasichemical model in the pair approximation is used for the liquid phase and Al_FCC phase of the Al–Zn system to account for the presence of the short-range ordering properly. Two ternary compounds reported by most of the research works are considered in the present calculation. The liquidus projections and vertical sections of the ternary systems are also calculated, and the invariant reaction points are predicted using the constructed database.  相似文献   

7.
A thorough review and critical evaluation of phase equilibria and thermodynamic data for the phases in the Mg–Ni–Y ternary system have been carried out over the entire composition range from room temperature to above the liquidus. This system is being modeled for the first time using the modified quasichemical model which considers the presence of short range ordering in the liquid. The Gibbs energies of the different phases have been modeled, and optimized model parameters that reproduce all the experimental data simultaneously within experimental error limits have been obtained. For the liquid phases, the modified quasichemical model is applied. A sublattice model within the compound-energy formalism is used to take proper account of the structures of the binary intermediate solid solutions. The Mg–Ni and Ni–Y binary systems have been re-optimized based on the experimental phase equilibrium and thermodynamic data available in the literature. The optimized thermodynamic parameters for the Mg–Y system are taken from the previous thermodynamic assessment of the Mg–Cu–Y system by the same authors. The constructed database has been used to calculate liquidus projection, isothermal and vertical sections which are compared with the available experimental information on this system. The current calculations are in a good agreement with the experimental data reported in the literature.  相似文献   

8.
《Calphad》2006,30(2):201-208
A thermodynamic analysis of the Zr–Be system has been carried out by combining ab initio energetic calculations with the CALPHAD approach. The energy of formation of the binary compound phases and some bcc-based ordered phases was calculated using the Full Potential Linearized Augmented Plane Wave method. The CrB-type ZrBe phase, which has been reported as a metastable phase, was found to be stable in the ground state, while the ZrBe phase with a CsCl-type B2 structure was found to be metastable. The Gibbs free energy of formation of the bcc phase was obtained by applying the cluster expansion and the cluster variation methods. To describe the B2 ordering state, the Gibbs energy of the bcc phase was represented using the two-sublattice model with the formula (Zr,Be)0.5(Zr,Be)0.5. Although the thermodynamic parameters for the CrB-type ZrBe phase did not satisfy both the experimental data and the ab initio calculations, the calculated phase diagram reproduced the experimental results. In addition, the glass-forming ability of this binary alloy was evaluated by incorporating the thermodynamic quantities from the phase diagram calculation into the Davies–Uhlmann kinetic approach. The evaluated glass-forming compositional range was narrower than the experimental results.  相似文献   

9.
Yajun Liu  Lijun Zhang  Yong Du  Di Yu  Dong Liang 《Calphad》2009,33(3):614-623
Following the treatment in CALPHAD, experimental data on diffusivities in Fe–Mn and Fe–C binary systems are critically evaluated with the DICTRA software to derive atomic mobilities. The effect of magnetic ordering on diffusion in bcc phase is taken into account, and the obtained atomic mobilities are expressed as functions of temperature and compositions with the Redlick–Kister polynomials. Based on the mobility parameters obtained in this work for the end-members and the interaction terms, comprehensive comparisons between the calculated and experimentally measured quantities are made. Due to the lack of experimental diffusivities for the ternary system, extrapolation based on binary information is performed, the results of which are used to study uphill diffusion of C in fcc Fe–Mn–C alloys. Such C diffusion against its own concentration gradient is a common occurrence for ternary systems containing one interstitial element, provided that the initial alloy compositions of diffusion couples are well chosen. In addition, the operating tie line evolution for proeutectic ferrite growth is also investigated, where C diffusion-controlled fast and Mn diffusion-controlled slow growths are discussed.  相似文献   

10.
Evelyne Fischer   《Calphad》2009,33(3):487-494
The ternary C–Pu–U system is thermodynamically assessed to pursue the development of a thermodynamic database for future nuclear fuels. The substitution model was used for the liquid phase, and a two-sublattice model for the PuC–UC monocarbide, PuC2–UC2 dicarbide and Pu2C3–U2C3 sesquicarbide phases. Ternary interaction parameters were adjusted on the experimental information for the phase relationships. Isoplethal and isothermal ternary sections, as well as some liquidus temperatures are calculated and compared with the experimental data. The overall agreement is discussed, and shows that experimental uncertainties still remain.  相似文献   

11.
12.
New experimental measurements of the mixing enthalpy of the liquid phase and the enthalpies of formation of the intermetallic compounds along with the data already taken into account in previous thermodynamic assessments have been used in a reassessment of the thermodynamic parameters of the Ca–Pb system. The calculations based on the thermodynamic modelling are in good agreement with the phase diagram data and experimental thermodynamic values.  相似文献   

13.
The Ni–Pt system is assessed using the CALPHAD method. The four fcc-based phases, i.e. disordered solid solution phase, Ni3Pt–L12, NiPt–L10 and NiPt3–L12, are described by a four-sublattice model. The calculated thermodynamic properties and order/disorder phase transformations are in good agreement with the experimental data. In order to facilitate the assessment, first-principles pseudopotential calculations are also performed to calculate the enthalpy of formation at 0 K, and comparison with the assessed values is discussed. By combining the assessments of Al–Ni and Al–Pt, the Al–Ni–Pt ternary system is assessed within a narrow temperature range, focusing on the fcc-based phases and their phase equilibria with B2 phase.  相似文献   

14.
A first attempt is made to simulate the solid part of the phase diagram of the ternary Pt–Pd–Rh system. To this end, Monte Carlo (MC) simulations are combined with the Modified Embedded Atom Method (MEAM) and optimised parameters entirely based on Density Functional Theory (DFT) data. This MEAM potential is first validated by calculating the heat of mixing or the demixing phase boundary for the binary subsystems Pt–Rh, Pt–Pd and Pd–Rh. For the disordered alloy systems Pt–Rh and Pt–Pd, the MC/MEAM simulation results show a slightly exothermic heat of mixing, thereby contradicting any demixing behaviour, in agreement with other theoretical results. For the Pd–Rh system the experimentally observed demixing region is very well reproduced by the MC/MEAM simulations. The extrapolation of the MEAM potentials to ternary systems is next validated by comparing DFT calculations for the energy of formation of ordered Pt–Pd–Rh compounds with the corresponding MEAM energies. Finally, the validated potential is used for the calculation of the ternary phase diagram at 600 K.  相似文献   

15.
Q. Yue  Y.Q. Liu  M.Y. Chu  J.Y. Shen   《Calphad》2009,33(3):539-544
The Sn–V binary system was thermodynamically modeled using the CALPHAD approach combined with first-principles calculations. The predicted Gibbs free energy of the end-members in sublattice models of “ V 3Sn” phase by the first-principles calculations was used to describe the lattice stabilities. A set of thermodynamic parameters for the Sn–V system was obtained using the PanOptimizer program in Pandat software. The calculated phase diagram and thermodynamic properties agree well with the reported experimental data.  相似文献   

16.
17.
18.
19.
20.
X.C. He  H. Wang  H.S. Liu  Z.P. Jin 《Calphad》2006,30(4):367-374
Based on the CALPHAD method, the Ag–Zr and Ag–Cu systems have been assessed thermodynamically. The excess Gibbs energy of the solution phases in the Cu–Ag–Zr system was modeled assuming random mixing of components. The ternary phase was defined as a stoichiometric compound due to the lack of efficient thermodynamic data. At first, parameters capable of describing all phases in the Ag–Zr and the Ag–Cu systems were assessed. Combined with the parameters of the Cu–Zr system assessed previously, the isothermal sections of the Cu–Ag–Zr system at 1023 K and 978 K were extrapolated, which can reproduce the measured phase-relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号