首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 363 毫秒
1.
为了研究长宽比对矩形截面高层建筑表面风压分布的影响,进行7个长宽比建筑的风洞试验,分析长边和短边正迎风时各立面的风压分布,从短边正迎风时侧风面的风压分布研究气流的分离和再附,计算得到面体型系数,并将面体型系数与荷载规范值进行比较。研究表明:短边正迎风时,迎风面的风压分布与长宽比无关,背风面风压比较均匀,长宽比越大负平均风压系数绝对值越小;当长宽比大于4∶1时,侧风面负风压绝对值由大变小再变大,气流发生分离、附着、再分离。试验获得的迎风面体型系数随着深宽比的增大而增大,背风面体型系数随深宽比的分布总体上与荷载规范一致。  相似文献   

2.
通过刚性模型风洞测压试验,对短边迎风和长边迎风时的矩形截面高层建筑表面风压特性及作用机理进行研究。对比了不同风向角下建筑表面风压分布及相关特性:短边迎风时,锥形涡是建筑侧面风压脉动的主要诱因,侧面脉动风压较大值出现在底边缘附近的瓣状区域内,该区域内风压互相关性显著;长边迎风时,旋涡脱落是导致建筑侧面风压脉动的主要因素,侧面吸力较大值集中在迎风前缘附近,且风压横向互相关性突出。基于风压时程的高阶矩,探讨了建筑表面风压非高斯脉动特性:短边迎风时,风压非高斯区位于迎风面角部、锥形涡作用区及尾流作用区;长边迎风时,非高斯区位于侧面迎风前缘附近的分离区。分析了建筑侧面脉动风压谱和风压相干性,结果表明:短边迎风时,建筑侧面风压脉动能量主要集中在低频段,风压强相干区域仅存在于迎风前缘附近;长边迎风时,旋涡脱落使得建筑侧面脉动风压谱和风压横向相干函数均在折减频率0.1处出现峰值,加之该频率所对应相位角接近0°,使得建筑侧面出现强烈且同步的风压脉动;短边迎风和长边迎风时锥形涡及旋涡脱落在建筑两侧诱导产生的风压脉动均为反相位,对结构抗风较为不利。  相似文献   

3.
肖锟 《山西建筑》2013,(2):28-30
基于一凹凸变化截面的刚性模型表面压力测量风洞试验结果,对超高层双塔建筑立面上测点的最不利风压系数进行了研究,分析了复杂截面及邻近的姊妹塔楼对建筑立面上围护结构风荷载的影响,得到了一些有用的结论。  相似文献   

4.
蒋瓅  吴宏  瞿革  李庆武 《建筑结构》2021,51(15):99-106
基于计算流体力学软件FLUENT,对不同洞口高度、洞口宽度及开洞位置的单开洞工业厂房进行了三维风场数值模拟分析,研究了单墙开洞对厂房平均内外压的影响.结果 表明:洞口开敞对建筑外墙的平均风压系数影响较小,仅受洞口影响的分离区覆盖范围内的外墙平均风压系数会略有偏差;单开洞工业厂房的平均内压分布较均匀;当开洞墙体为迎风面且与来流方向垂直时,工业厂房内正压平均值受洞口高度影响较大,随洞口宽度的增加总体呈减小趋势,随洞口偏置程度的增加而减小;当开洞墙体平行于来流方向时,厂房内负压平均值受洞口高度影响小,在洞口宽度较小时与洞口宽度呈反比,随洞口偏置程度的增加而增大.  相似文献   

5.
对不同开洞工况下的超高单层厂房模型进行风洞试验,研究不同开洞工况对厂房纵墙内外表面风压分布的影响,给出风压体型系数沿纵墙长度方向的变化规律并与规范值进行对比。试验结果表明:当山墙单一开洞时,对外风压分布影响不大;当两端山墙均开大洞时,纵墙内外表面风压沿来流方向衰减较快;山墙单一开洞会导致纵墙所受的极值风压增大,靠近开洞山墙的纵墙端部受风荷载较大,可以称之为端部效应;对山墙单一开洞厂房,纵墙在近开洞的端部区和其他区的最不利负风压(吸力)分别出现在0°(开洞墙面为正迎风面)和15°风向角;对于两端同时开洞工况,两端部区最不利负风压(吸力)出现在45°和135°风向角,非端部区则出现在150°风向角;所有工况中以较小开洞工况受力最为不利;对于迎风端部区排架水平受力最不利的工况为两端山墙都开大洞的情况。  相似文献   

6.
洞口设置对高层建筑静力风荷载的影响研究   总被引:5,自引:0,他引:5       下载免费PDF全文
本文对涉及两种开洞率、三种不同开洞位置和全封闭(无洞口)的八个高层建筑刚性模型的表面平均风压分布进行了风洞试验研究,并与计算流体动力学(CFD)大型商业软件Fluent6.0的计算结果进行了对比分析。结果表明,开洞建筑平均风压的减少主要是受荷面积减少引起的,但其减少的比率大于开洞率。此外,借助Fluent6.0对不同开洞率情况下的建筑模型进行了大量算例分析,得到了中部开洞建筑模型的平均风压系数相对值和基底弯矩系数相对值与开洞率之间的相关方程;探讨了底部开洞建筑模型洞内平均风速的增大效应与洞口大小、来流方向之间的关系。分析表明,在最不利来流风向角情况下,洞中最大平均风速可超过建筑模型顶部的远处来流风速,应引起建筑风环境设计者的关注。  相似文献   

7.
为研究我国沿海地区超高层建筑的风场和风压特性,在2010年台风“鲇鱼”登陆前后对厦门沿海某超高层建筑的风场和建筑表面风压进行了同步监测。通过对实测风场和风压数据的深入分析表明:沿海地区超高层建筑风场的湍流度随风速增大变化平稳,阵风因子随湍流度的增大而增大;实测脉动风速功率谱密度与von Karman谱吻合较好;建筑各面内测点之间的瞬时风压、平均风压、平均风压系数和极值风压系数具有较强的相关性;实测平均风压和平均风压系数在迎风面较大,在背风面非常小;当风从角部吹向建筑时,随着风向角的变化,两迎风面的平均风压系数随着平均风速的增大变化规律相反;两背风面的平均风压系数随着平均风速的增大逐渐减小;迎风面的极值风压系数随着风向角的变化正负波动较大,背风面的极值风压系数分布较为均匀;迎风面的脉动风压系数较大且变化较大,背风面的脉动风压系数非常小且变化平稳;建筑各面的极值风压系数和脉动风压系数的幅值随着风速的增大逐渐减小。  相似文献   

8.
开洞建筑风压分布特性风洞试验研究   总被引:1,自引:0,他引:1  
对美国迈阿密市一假日酒店的刚体模型进行了风洞试验,研究了表面开洞对建筑局部风荷载的影响及圆截面结构风荷栽分布的特点.结果表明,建筑表面开洞会增大其开洞周围的风荷载;开洞圆截面结构的风荷载分布特性同现行荷载规范给出的规律相接近,但最大负风压系数(绝对值)要小于最大正风压系数.  相似文献   

9.
戴益民  王相军  刘也 《建筑结构》2015,(2):95-99,88
为研究开洞低矮房屋在台风环境下的破坏机理,基于ANSYS软件采用SST k-ω湍流模型对低矮房屋封闭、单一洞口的屋面风压分布及变化规律进行数值模拟研究,与全尺模型实测及风洞试验结果对比表明:数值模拟结果与实测及风洞试验结果基本吻合,验证了采用SSTk-ω湍流模型研究低矮房屋表面风压的可靠性;湍流度对平均内风压系数的影响随开洞位置不同而不同,屋顶开洞时,随着湍流度的增大,平均内风压系数的绝对值变小,屋面平均净风压系数增大;屋沿开洞时,随着湍流度的增大,平均内风压系数的绝对值增大,但平均净风压系数的变化不大;风向角对整体屋面平均内风压系数的影响显著,尤其是在开洞边缘区和迎风角部区域。  相似文献   

10.
对某墙面开洞的圆弧形落地大跨钢屋盖机场航站楼风荷载特性进行了风洞试验研究;基于计算流体力学软件FIUENT 6.3,采用RNG ?κ-ε?湍流模型对墙面开洞屋盖结构的内外表面平均风压系数分布、分区净体型系数、风速矢量以及风场流迹线等风荷载特性进行了系统研究,并将数值模拟结果与风洞试验结果进行比较分析。结果表明:数值模拟的净体型系数和平均风压系数分布规律与试验结果吻合良好;墙面洞口全开的情况下,由于迎风洞口与背风洞口处压力差的作用,屋盖内表面风压均表现为风吸力,风压分布亦受到洞口的影响;墙面洞口对屋盖上表面平均风压系数分布影响较小;屋盖迎风挑檐区域受到风荷载下顶上吸的叠加作用,最大净体型系数达-2.83。  相似文献   

11.
双幕墙长矩形建筑风荷载特性的试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
以节能、生态为理念的双幕墙围护体系已逐步应用于高层办公建筑中。由于双幕墙之间存在通风廊道,因此对于双幕墙建筑有三个受风表面,即外层幕墙的内表面和外表面以及内幕墙的外表面,这使得风载取值变得复杂,目前也无规范可依。本文通过对杭州市某双幕墙办公楼的风洞试验研究,探讨了双幕墙建筑内、外层幕墙的风载取值问题;研究了门厅大跨挑篷风压分布特征,当风从侧面吹向挑篷时,挑篷上、下表面风载与普通屋盖挑篷相同,而当风从正面吹向挑篷时,挑篷上表面出现正风压,并对此现象进行了分析;文中针对该建筑物长宽比较大的特点,比较了大长宽比矩形建筑风载体型系数与规范给出的正方形建筑风载体型系数:当风沿建筑物长向流动时,采用规范给出的正方形建筑风载体型系数是可行的,当风沿建筑物进深方向流动时,其两侧及背风面的负压比正方形的大。  相似文献   

12.
L形和一字形双层幕墙平均风压分布特性的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
双层通风幕墙的抗风设计需考虑外层幕墙的内、外表面风压以及内层幕墙的外表面风压,其风荷载取值不同于普通单层幕墙,使得其风载取值变得复杂。通过多个不同截面形式的模型进行双层幕墙压力分布风洞试验研究。介绍风洞试验模型的设计及数据处理方法,着重分析一字形双层幕墙和L形双层幕墙的内外层幕墙的平均风压分布。试验结果表明:L形双层幕墙和一字形双层幕墙的平均风压分布有很大的不同。对于一字形双层幕墙,无论是正风压还是负风压,都主要作用在内幕墙上,外幕墙除拐角区域外所承担的风压很小。对于L形双层幕墙,其外幕墙的正风压要比内幕墙的风压大;负风压时,L形双层幕墙的短边区域是外幕墙所承担的风压大于内幕墙,其长边区域则是内幕墙所受的风压要大于外幕墙。  相似文献   

13.
应用基于CFD的数值风洞技术对某幕墙建筑房间单元的通风特性进行了分析,气流的计算采用标准k-ε湍流模型,模拟结果表明,在幕墙的凹面倒边开窗比在幕墙正面开窗具有更佳的通风效果。  相似文献   

14.
高层建筑悬挑遮阳板等小尺寸构件直接承受风荷载作用,在强风作用下的安全性备受关注。相对于建筑的整体尺寸,悬挑遮阳板很小,难以在缩尺模型上直接模拟,因此在实际工程的风洞试验研究中常常被简化或者忽略。研究中利用3D打印技术制作了精细化的有悬挑遮阳板的高层建筑风洞试验模型,并在打印遮阳板模型时直接预留测压管道,分析了水平悬挑遮阳板的风压分布规律及遮阳板对建筑立面风压的影响,并对基于建筑立面风压的悬挑遮阳板风压估计方法的估算误差进行了评估。研究结果表明:高层建筑水平悬挑遮阳板的最不利净风压的最大值出现在顶层遮阳板处;水平悬挑遮阳板的存在能较大程度地削弱建筑立面上的最不利负风压;悬挑遮阳板最不利风压可利用其上下两侧附近建筑立面测点的风压差近似估计,但对于建筑立面边缘附近的悬挑遮阳板端部以及建筑底部附近的最底层悬挑遮阳板上的最不利风压,这种方法的估算误差较大。  相似文献   

15.
基于FLUENT软件并引入k-ε湍流模型,对环状大悬臂挑篷屋盖风载和风场进行模拟分析。数值计算分析风向角、屋盖倾角、看台后部通风率、挑篷开洞、有无后挑等参数对挑篷屋盖风压分布的影响;针对屋盖周围气流的绕流特性,分析设置屋盖竖向气动导流板和在挑篷外环边缘附近开洞对降低屋盖负风压的作用。研究结果表明:无论风向角如何变化,水平挑篷屋盖上风压均以吸力为主,较高的吸力分布在迎风的前缘位置;屋盖倾角宜设在 0°~15°范围,过大或过小均不利于结构抗风;增大结构迎风面的通风率有利于减小水平屋盖的平均风压;屋盖是否后挑对水平屋盖上表面的风压影响较小;增设屋盖竖向导流板可减低水平屋盖前缘局部极值风压;在环状挑篷外环边缘附近开洞可较明显减小屋盖风压。  相似文献   

16.
为研究建筑外表面竖向外伸肋板对高层建筑气动力的影响,试验中采用了1个未设置肋板的参考模型和4个不同肋板布置形式的研究模型,通过模型测压风洞试验,获得了不同风向角下各模型的表面风压,进而对比分析了各模型的基底弯矩系数和层风力系数。试验结果表明:在所有试验模型中,外伸宽度d(d=7.5%D,D为模型长度)较小且靠近建筑边缘(b=15%B,b为肋板与模型边缘距离,B为模型宽度)的竖向肋板可以有效降低横风向脉动层风力系数,最大降幅为40.17%;竖向肋板可以有效降低基底弯矩系数的极值,顺风向和横风向的基底弯矩系数极值最大降幅分别为28.64%和39.02%。通过对比横风向气动基底弯矩功率谱密度发现,无肋板参考模型与加肋板模型的功率谱密度接近,说明竖向肋板的作用并非改变横风向脉动风荷载的能量分布,而是降低其强度;通过研究基底弯矩的相平面轨迹发现,当竖向肋板外伸宽度较小时,顺风向和横风向基底弯矩相关性随着竖向肋板外伸宽度的增大而增强。总体上,通过合理的竖向肋板布置能够取得较为显著的气动优化效果。  相似文献   

17.
High-resolution 3D steady RANS CFD simulations of forced convective heat transfer at the facades of a low-rise cubic (10 × 10 × 10 m3) building are performed to determine convective heat transfer coefficients (CHTC). The focus is on the windward facade. CFD validation is performed based on wind tunnel measurements of velocity and heat transfer for reduced-scale cubic models. The CFD simulations employ a high-resolution grid with, for the 10 m cubic building, cell centres at a minimum distance of 160 μm from the building surface to resolve the entire boundary layer, including the viscous sublayer and the buffer layer, which dominate the convective surface resistance. The results show that: (1) the wind flow around the building results in highly varying CHTC values across the windward facade; (2) standard and non-equilibrium wall functions are not suitable for CHTC calculation, necessitating either low-Reynolds number modelling or specially-adapted wall functions; (3) at every facade position, the CHTC is a power-law function of the mean wind speed; (4) the CHTC distribution at the windward facade is relatively insensitive to wind direction variations in the 0–67.5° angle range; (5) the CHTC shows a stronger spatial correlation with the turbulent kinetic energy than with the mean wind speed across the facade; and (6) the CHTC distribution across the windward facade is quite similar to the distribution of wind-driven rain (WDR), with both parameters reaching high levels near the top edge of the facade. This suggests that also the convective moisture transfer coefficient will be higher at this location and that the facade parts that receive most WDR might also experience a higher drying rate.  相似文献   

18.
雷暴冲击风作用下高层建筑风压幅值特性研究   总被引:1,自引:0,他引:1  
采用冲击射流装置模拟雷暴冲击风,对4个不同深宽比的高层建筑模型进行测压试验,分析了各模型8个不同径向位置处的风压幅值特性,并与大气边界层风作用下的建筑表面风压系数进行了对比。结果表明:雷暴冲击风作用下,建筑迎风面为正压,侧面和背风面均为负压;迎风面平均和脉动风压受模型深宽比影响较小,侧面和背风面受深宽比影响较大;随着径向距离的增加,迎风面平均风压系数逐渐减小,脉动风压系数先增大后减小,侧面平均风压系数绝对值以及脉动风压系数先增大后减小,背风面平均和脉动风压系数变化较为平缓;各模型迎风面风压系数沿高度呈“鼻子”状分布,最大风压出现在0.25H(H为模型高度);与大气边界层风作用下建筑表面风压幅值相比,雷暴冲击风作用下高层建筑模型的迎风面中下部区域以及侧面前缘部位风压系数较大,考虑雷暴冲击风作用的高层建筑设计时,应对这些区域的风荷载取值进行适当放大。  相似文献   

19.
开合屋盖体育场风荷载特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
建筑立墙迎风面开孔时内部风压随开口处外压变化显著,使得屋盖所受净压显著增大,其测量值往往大于规范取值。而对于屋盖顶部开孔的建筑,其内部风荷载我国规范没有相应取值。为了进行开合屋盖结构设计和探讨屋盖顶部开孔对屋盖风荷载变化的影响,以1∶300的几何缩尺比制作了一个开合屋顶体育场的刚性模型,在B类地貌中对该体育场固定、活动屋盖的上、下表面进行了风洞测压试验,得到了屋盖上、下表面的体型系数、平均风压系数、脉动风压系数和极值风压系数。试验结果表明:活动屋盖的开启,可有效减小固定屋盖和活动屋盖的平均风荷载,引发整个结构承受向下的风荷载;活动屋盖开启将增大固定屋盖和活动屋盖的净脉动风荷载;活动屋盖开启将减小固定屋盖和活动屋盖的极小值风荷载,且固定屋盖上的最大极小值风压系数的位置往屋顶开口方向移动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号