首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
We have analyzed in transgenic tobacco the expression of a chimeric gene containing 5 sequences of the rice rab-16B gene fused to the -glucuronidase (GUS) reporter gene. This construct, a translational fusion (–482 to +184) including 14 amino acids of the RAB-16B protein, is expressed only in zygotic and pollen-derived embryos. In zygotic embryos, GUS activity begins to accumulate 10 days after flowering (daf), and increases until seed maturation at 25 daf. Immunological measurements of endogenous abscisic acid (ABA) accumulation in these seeds showed a close parallel between hormone levels and GUS activity. However, GUS activity could not be reproducibly induced by treatment of immature embryos with ABA (10 M). Neither GUS activity nor GUS mRNA could be detected in leaves of transgenic tobacco even after ABA treatment. In contrast, GUS activity could be induced to high levels in pollen-derived embryos by treatment with ABA. Our results show that 482 bp of 5 sequences of the rice rab-16B promoter can confer in transgenic tobacco developmentally regulated expression in embryos but not ABA-responsive expression in vegetative tissues.  相似文献   

2.
The expression of a stress- and salicylic acidinducible protein gene from tobacco, PR1a protein gene, was determined after its Introduction to lettuce (Lactuca sativa L.) plants. The 5 flanking 2.4 Kb fragment from PR1a gene was joined to the bacterial -glucuronidase (GUS) gene (PR-GUS) and introduced into lettuce cotyledons by Agrobacterium-mediated gene transfer using a binary vector containing a kanamycin-resistance gene as a selectable marker. As a control with constitutive expression, the chimeric gene consisting of CaMV 35S RNA promoter and GUS gene (35S-GUS) was used. An improved method for shoot formation directly from lettuce cotyledons was used effectively for transformation, shortening the time for regeneration. In 70% or more of kanamycin-resistant regenerated lettuce plants, into which PR-GUS or 35S-GUS was introduced, high GUS activity and integration of the chimeric gene into the lettuce genome were detected. By treatment with salicylic acid, GUS activity increased 3- to 50-fold in PR-GUS transformants, however, no increase was detected in 35S-GUS plants. These results showed that the promoter of the stress-inducible tobacco PR1a protein gene was introduced into lettuce plants, and the introduced chimeric gene was expressed normally under the regulated control of the PRla promoter.Abbreviations BA N6-benzyladenine - GUS -glucuronidase - NAA -naphthaleneacetic acid - Km kanamycin - Kms kanamycin resistant - Km0 kanamycin sensitive - NPT- II neomycin phosphotransferase II - PR pathogenesis-related - SA salicylic acid - MS Murashige and Skoog medium - NOS nopaline synthase  相似文献   

3.
A genomic clone for the cyc07 gene, which is expressed specifically at the S phase during the cell cycle in synchronous cultures of periwinkle (Catharanthus roseus) cells, was isolated. Determination of the nucleotide sequence of the clone revealed that the cyc07 gene consists of seven exons separated by six introns. Genomic Southern analysis indicated that the cyc07 gene is present as a single copy per haploid genome in periwinkle. Expression of related genes was detected in a wide range of other plants. Transgenic Arabidopsis plants were generated that expressed the gene for -glucuronidase (GUS) under the control of the promoter of the cyc07 gene. The tissue-specific pattern of expression directed by the promoter was investigated by analysis of GUS activity. Histochemical tests demonstrated that 589 bp of the 5-upstream sequence of the cyc07 gene could direct specifical expression of the GUS reporter gene in meristematic tissues in transgenic plants. The spatial pattern of expression directed by the promoter was closely correlated with meristematic activity and cell proliferation, suggesting an association between the function of the cyc07 gene and cell proliferation.  相似文献   

4.
Cotyledonary somatic embryos of white spruce [Picea glauca (Moench) Voss] were subjected to microprojectile bombardment with a gene construct containing a gus::nptll fusion gene. Somatic embryos were used to re-induce the embryogenic tissue after bombardments. Histochemical assay using X-gluc as a substrate showed that all the embryos (100%) were GUS positive 48 h after bombardment. However, only thirteen out of 605 embryos (2.2%) remained GUS positive after two months in culture. Three of those thirteen (23%) embryo-derived tissues consistently showed GUS activity for eight months in culture. These putatively transfomed embryogenic tissues were subjected to Southern blot analysis and the results suggested integration of the gus::nptll gene expression cassette in the white spruce genome.Abbreviations ABA (±)abscisic acid - BA benzyladenine - bp base pair - 2,4-D 2,4-dichlorophenoxyacetic acid - kb kilobase - gus E. coli gene uid A for -glucuronidase - nptll neomycin phosphotransferase II - X-gluc 5-bromo-4-chloro-3-indolyl--D-glucuronic acid  相似文献   

5.
Electroporation was used to evaluate parameters affecting transient gene expression in Glycine max protoplasts. Protoplast viability and reporter enzyme activity for chloramphenicol acetyl transferase (CAT) and ß-glucuronidase (GUS) depended on the field strength employed. Maximum CAT and GUS activity was obtained when a field strength of 500 V/cm at 1000 F and a protoplast concentration of 1–3 × 106/ml was used. Transformation efficiencies up to approximately 1.6% GUS positive protoplasts were obtained. Transient gene expression increased with increasing plasmid DNA concentration and with the time after electroporation, reaching a maximum after 48 hr. Addition of polyethylene glycol at 5.6% and heat shock (5 rain at 45 °C) given to the protoplasts before adding DNA further enhanced the transformation efficiency. Under the optimized experimental conditions, CAT and GUS activity increased simultaneously, thereby indicating that the increased expression is caused by DNA uptake by more cells rather than greater DNA uptake by the same cells. Our results demonstrate that both GUS and CAT can be used as efficient screenable markers for transformation studies in soybean.Abbreviations CAT chloramphenicol acetyl transferase - GUS ß-glucuronidase - PEG polyethylene glycol  相似文献   

6.
To study the expression and regulation of a rice glycine-rich cell wall protein gene, Osgrpl, transgenic rice plants were regenerated that contain the Osgrpl promoter or its 5 deletions fused with the bacterial -glucuronidase (GUS) reporter gene. We report here a detailed histochemical analysis of the Osgrpl-Gus expression patterns in transgenic rice plants. In roots of transgenic rice plants, GUS expression was specifically located in cell elongation and differentiation regions, and no GUS expression was detectable in the apical meristem and the mature region. In shoots, GUS activity was expressed only in young leaves or in the growing basal parts of developing leaves, and little GUS activity was expressed in mature leaves or mature parts of developing leaves. In shoot apices, GUS activity was detected only in those leaf cells which were starting to expand and differentiate, and GUS expression was not detected in the apical meristem and the young meristematic leaf primordia. GUS activity was highly expressed in the young stem tissue, particularly in the developing vascular bundles and epidermis. Thus, the expression of the Osgrpl gene is closely associated with cell elongation/expansion during the post-mitotic cell differentiation process. The Osgrpl-Gus gene was also expressed in response to wounding and down-regulated by water-stress conditions in the elongation region of roots. Promoter deletion analysis indicates that both positive and negative mechanisms are involved in regulating the specific expression patterns. We propose a simple model for the developmental regulation of the Osgrpl gene expression.  相似文献   

7.
A cell suspension culture was established from a transgenic petunia (Petunia hybrida L.) plant which carried genes encoding neomycin phosphotransferase II (nptII) and -glucuronidase (uidA, GUS). Two selection experiments were performed to obtain cell lines with increased resistance to kanamycin. In the first, two independently selected cell lines grown in the presence of 350 g/ml kanamycin were eight to ten-fold more resistant to kanamycin than unselected cells. Increased resistance was correlated with amplification of the nptII gene and an increase in nptII mRNA levels. Selection for kanamycin resistance also produced amplification of the linked GUS gene, resulting in increased GUS mRNA levels and enzyme activity. Selected cells grown in the absence of kanamycin for twelve growth cycles maintained increased copy numbers of both genes, and GUS enzyme activity was also stably overexpressed. In a second selection experiment, a cell line grown continuously in medium containing 100 g/ml kanamycin exhibited higher nptII and GUS gene copy numbers and an increase in GUS enzyme activity after eleven growth cycles. In this cell line, amplification of the two genes was accompanied by DNA rearrangement.  相似文献   

8.
Agrobacterium tumefaciens-mediated genetic transformation and the regeneration of transgenic plants was achieved in Hevea brasiliensis. Immature anther-derived calli were used to develop transgenic plants. These calli were co-cultured with A. tumefaciens harboring a plasmid vector containing the H. brasiliensis superoxide dismutase gene (HbSOD) under the control of the CaMV 35S promoter. The -glucuronidase gene (uidA) was used for screening and the neomycin phosphotransferase gene (nptII) was used for selection of the transformed calli. Factors such as co-cultivation time, co-cultivation media and kanamycin concentration were assessed to establish optimal conditions for the selection of transformed callus lines. Transformed calli surviving on medium containing 300 mg l-1 kanamycin showed a strong GUS-positive reaction. Somatic embryos were then regenerated from these transgenic calli on MS2 medium containing 2.0 mg l-1 spermine and 0.1 mg l-1 abscisic acid. Mature embryos were germinated and developed into plantlets on MS4 medium supplemented with 0.2 mg l-1 gibberellic acid, 0.2 mg l-1 kinetin (KIN) and 0.1 mg l-1 indole-3-acetic acid. A transformation frequency of 4% was achieved. The morphology of the transgenic plants was similar to that of untransformed plants. Histochemical GUS assay revealed the expression of the uidA gene in embryos as well as leaves of transgenic plants. The presence of the uidA, nptII and HbSOD genes in the Hevea genome was confirmed by polymerase chain reaction amplification and genomic Southern blot hybridization analyses.Communicated by L. Peña  相似文献   

9.
10.
A transformation system was established for red raspberry, blackberry and blackberry x raspberry hybrids, utilizing the binary vector system of Agrobacterium tumefaciens. Leaf discs or internodal stem segments were inoculated with Agrobacterium strain LBA4404 containing the binary vectors PBI121.X, which has the -glucuronidase (GUS) marker gene, or Bin 19, which has the neomycin phosphotransferase II (NPT II) gene. Regenerants were produced on media containing MS salts, 20 gl-1 sucrose, 7 gl-1 agar, 100 mgl-1 inositol, 0.5 mgl-1 nicotinic acid, 0.5 mgl-1 pyridoxine-HCl, 0.1 mgl-1 thiamine, and either 0.1 mgl-1 IBA and 2 mgl-1 BAP for leaf discs, or 0.2 mgl-1 BAP and 0.2 mgl-1 2,4-D for stem segments. Kanamycin sulphate, which was used as a selective agent for the NPT II gene, inhibited organogenesis at 50 mgl-1 and was therefore unsuitable for use as a selectable marker gene in Rubus. All regenerants were assayed utilizing the fluorogenic assay procedure to determine if the GUS gene had been transferred into the material and could therefore cleave the substrate 4-methyl-umbelliferyl--D-glucuronide. Seven GUS-positive plantlets were obtained which confirmed that this marker gene had been transferred into Rubus. A dot blot assay was carried out on GUS-positive plant material to establish if the NPT II gene had also been transferred to the plant material.  相似文献   

11.
We have isolated a genomic clone encoding tomato TAS14, a dehydrin that accumulates in response to mannitol, NaCl or abscisic acid (ABA) treatment. A fragment of tas14 gene containing the region from –2591 to +162 fused to -glucuronidase gene drives ABA- and osmotic stress-induced GUS expression in transgenic tobacco. Histochemical analysis of salt-, mannitol-and ABA-treated plants showed GUS activity mainly localized to vascular tissues, outer cortex and adventitious root meristems, coinciding with the previously observed distribution of TAS14 protein in salt-stressed tomato plants. In addition, GUS activity was also observed in guard cells, trichomes and leaf axils. Developmentally regulated gus expression was studied in unstressed plants and found to occur not only in embryos, but also in flowers and pollen. Tas14 expression in floral organs was confirmed by northern blots of tomato flowers.  相似文献   

12.
A genomic clone encoding the potato homolog of the yeast ubiquitin-ribosomal protein fusion gene ubi3 was isolated and characterized. Chimeric genes containing the ubi3 promoter (920 bp of 5 to the ubiquitin start codon) were constructed in which the reporter gene -glucuronidase (GUS) was either fused directly to the promoter, or introduced as a translational fusion to the ubiquitin-coding region. After introduction into the potato by Agrobacterium-mediated transformation, GUS activities were measured in leaves and in tubers of transgenic clones. GUS activity was 5- to 10-fold higher in clones expressing the ubiquitin-GUS translational fusion than in clones containing GUS fused directly to the ubi3 promoter. For both types of constructs, GUS activity was highest in meristematic leaves and declined during leaf expansion, then rose again to near the meristematic levels during senescence. GUS activity in tubers was similar to that in young leaves. In contrast to the native ubi3 genes, the chimeric ubi3-GUS transgenes were not activated in the tuber by wounding.  相似文献   

13.
Directed excision of a transgene from the plant genome   总被引:40,自引:0,他引:40  
Summary The effectiveness of loxP-Cre directed excision of a transgene was examined using phenotypic and molecular analyses. Two methods of combining the elements of this system, re-transformation and cross pollination, were found to produce different degrees of excision in the resulting plants. Two linked traits, -glucuronidase (GUS) and a gene encoding sulfonylurea-resistant acetolactate synthase (ALSr), were integrated into the genome of tobacco and Arabidopsis. The ALSr gene, bounded by loxP sites, was used as the selectable marker for transformation. The directed loss of the ALST gene through Cre-mediated excision was demonstrated by the loss of resistance to sulfonylurea herbicides and by Southern blot analysis. The -glucuronidase gene remained active. The excision efficiency varied in F1 progeny of different lox and Cre parents and was correlated with the Cre parent. Many of the lox × Cre F1 progeny were chimeric and some F2 progeny retained resistance to sulfonylureas. Re-transformation of lox/ALS/lox/GUS tobacco plants with cre led to much higher efficiency of excision. Lines of tobacco transformants carrying the GUS gene but producing only sulfonylurea-sensitive progeny were obtained using both approaches for introducing cre. Similarly, Arabidopsis lines with GUS activity but no sulfonylurea resistance were generated using cross pollinations.  相似文献   

14.
Summary DNA methylation has been associated with gene activity in differentiating and developing plant tissues. The objective of this study was to determine the involvement of methylation in the expression of a gene transferred into carrot (Daucus carota L.) tissues by particle bombardment. Expression of the Dc8-GUS gene construct in response to treatments with 5-azacytidine (S-azaC) and to in vitro methylation by methylases was investigated by histochemical assay of GUS activity. The 5-azaC treatment increased the frequency of Dc8-driven GUS expression in both calli and somatic embryos. The increase occurred with treatment either to E. coli containing the plasmid insert or to the carrot tissues before bombardment. GUS expression, increased by the 5-azaC treatment, was enhanced by ABA treatment of both calli and somatic embryos and was more prominent in the latter. Increased digestion of the 5-azaC-treated plasmid DNA with EcoRII suggested that demethylation had occurred. In vitro methylation of Dc8-GUS by methylases generally resulted in a lower frequency of GUS expression. SssI methylase completely inhibited GUS expression. The level of GUS expression was correlated with the extent of methylation of the plasmid.Abbreviations ABA Abscisic Acid - 5-azaC 5-azacytidine - GUS -glucuronidase - Dc8 carrot promoter  相似文献   

15.
16.
17.
We generated transgenic tobacco and rice plants harboring a chimeric gene consisting of the 5-upstream sequence of the rice metallothionein gene (ricMT) fused to the -glucuronidase (GUS) gene. The activity and tissue-specific expression of the ricMT promoter were demonstrated in these transgenic plants. In the transgenic rice plants, despite substantial levels of GUS activity in the shoot and root, almost no GUS signal was detected in the endosperm. Thus, the ricMT promoter could be useful in avoiding accumulation of undesired proteins in the seed endosperm.  相似文献   

18.
The effects of promoter on transient expression in conifer cell lines   总被引:3,自引:0,他引:3  
Summary Protoplasts from suspension cultures of somatic embryos of white spruce (Picea glauca Moench Voss) were electroporated with plasmids containing the chimeric genes for chloramphenicol acetyl transferase (CAT) or -glucuronidase (GUS), under control of one of three promoters. Transient CAT gene expression of approximately equal magnitude resulted when the CAT gene was fused to either the cauliflower mosaic virus (CaMV) 35S promoter or the nopaline synthase (NOS) promoter. When the CAT gene was fused to a tandem repeat CaMV 35S promoter (pPBI-363), CAT enzyme activity compared to NOS or 35S promoters increased up to eightfold (cell line WS-34), and were up to 100-fold greater than control (electroporated without plasmid). Comparatively, protoplasts of black spruce (Picea mariana Mill) and jack pine (Pinus banksiana Lamb.), electroporated with pPBI-363, produced increases in CAT activity compared to control of 90-fold and 70-fold, respectively. White spruce (WS-34) protoplasts were subsequently electroporated with the GUS gene fused to the tandem repeat CaMV 35S promoter. Comparatively, GUS enzyme activity increased up to tenfold compared to GUS fused to a CaMV 35S promoter. The results indicated that transient expression of the CAT and GUS genes was influenced by the type of promoter and cell line used, as well as by electroporation conditions.NRCC No. 30498  相似文献   

19.
Gene constructs that contained the -glucuronidase (GUS) gene under the control of a pollen-specific Zm13 promoter from maize and a LAT52 promoter from tomato were introduced by electroporation into pollen protoplasts isolated from bicellular pollen grains of Lilium longiflorum. After 20 h in culture, the pollen protoplasts exhibited the apparent expression of GUS in a fluorometric assay. The GUS activity induced under the control of the Zm13 promoter was over 10 000 times higher than activity in the control (with no DNA or without electroporation). By contrast, the GUS gene was nearly silent in the lily microspore protoplasts and generative cell protoplasts. The GUS activity driven by the Zm13 and LAT52 promoters was also detected by a cytochemical assay. The frequency of blue-staining pollen protoplasts was about 70% in the case of the Zm13 promoter. The efficiency of gene transfer by electroporation was much higher than by particle bombardment. This protoplast-specific electroporation system is suitable for rapid and reliable examination of pollen-specific promoters, being as good as the particle bombardment system.  相似文献   

20.
The ability to control gene expression in a temporal and spatial manner provides a new tool for the study of mammalian gene function particularly during development and oncogenesis. In this study the suitability of the tet-system for investigating embryogenesis was tested in detail. The tTA CMV (M1) and rTA CMV-3 (reverse Tc-controlled transactivator) transgenic mice were bred with NZL-2 bi-reporter mice containing the vector with a tTA/rTA responsive bidirectional promoter that allows simultaneous regulation of expression of two reporter genes encoding luciferase and -galactosidase. In both cases reporter genes were found to be expressed in a wide spectrum of tissues of double transgenic embryos and adult mice. The earliest expression was detected in tTA CMV (M1)/NZL-2 embryos at embryonic day 10.5 (E10.5) and rTA CMV -3/NZL-2 embryos at E13.5. Doxycycline abolished -gal expression in tTA CMV (M1)/NZL-2 but induced it in rTA CMV -3/NZL-2 embryos including late stages of embryogenesis. The tTA and rtTA transactivators thus revealed a partially complementary mode of action during second half of embryonic development. These experiments demonstrated that both Tet regulatory systems function during embryonic development. We conclude that the Tet systems allows regulation of gene expression during embryonic development and that double reporter animals like the NZL-2 mice are useful tools for the characterization of newly generated tet transactivator lines expressing tTA (or rtTA) in embryonic as well as in adult tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号