首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
利用水溶性前驱体材料在水性介质中制备了ZnS:Eu和ZnS:Eu/ZnS核/壳结构量子点,并利用XRD、TEM和PL对ZnS:Eu和ZnS:Eu/ZnS核/壳结构量子点的结构和发光性能进行了研究.ZnS:Eu和ZnS:Eu/ZnS量子点XRD谱显示:ZnS:Eu和ZnS:Eu/ZnS量子点具有β-ZnS结构,且随着Zn...  相似文献   

2.
以多磷酸钠为分散剂,采用水相共沉淀法制备了Mn2+掺杂的ZnS量子点,通过X射线衍射(XRD)谱、高分辨透射电子显微镜(HRTEM)图像、紫外-可见吸收光谱和光致发光(PL)谱等表征了ZnS:Mn2+量子点的结构、形貌和发光性能;通过对比在空气中干燥前后样品的PL谱,进一步证明了441 nm的峰是属于与硫空位相关的发射。同时,将处理后的样品分散到氯仿中,制备了单层的电致发光(EL)器件,在12 V直流电压的驱动下,在597 nm的位置观测到了Mn2+相关的特征发射。  相似文献   

3.
采用二次阳极氧化法制备了多孔氧化铝(AAO)模板.利用此AAO模板,采用电化学沉积的方法制备了ZnS:Mn纳米晶.对AAO模板进行了扫描电子显微镜(SEM)测试.结果显示,AAO模板孔洞分布均匀,孔径基本一致.对ZnS:Mn纳米晶进行了SEM测试和荧光光谱(PL)测试,SEM测试结果表明,在AAO模板上沉积了一层ZnS:Mn纳米晶,PL谱结果显示Mn离子成功地掺杂进ZnS.从电负性角度讨论了ZnS:Mn纳米晶的形成机制.  相似文献   

4.
多种ZnO纳米结构和ZnO/ZnS核壳结构的制备   总被引:1,自引:0,他引:1  
以Zn(NO3)2.6H2O和CO(NH2)2为原料,采用均匀沉淀法,制备出了棒状、花状、球状纳米氧化锌(ZnO)。将ZnO微球体分散在Na2S溶液中,通过离子替代法,成功制备了ZnO/ZnS核壳结构。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等测试手段对ZnO纳米结构和ZnO/ZnS核壳结构的晶体结构和表面形貌进行了表征,初步探讨了纳米ZnO和ZnO/ZnS核壳结构的生长机理。根据测试结果得知,ZnO纳米棒呈现六方纤锌矿结构,随着Zn2+浓度逐渐增加,ZnO纳米结构形貌由单分散的棒状聚集成花状,最后演变成球形。ZnO/ZnS复合结构为内核ZnO,外面包覆一层ZnS的核壳结构。所有的纳米ZnO均具有相似的发光特点,ZnO/ZnS核壳结构的发光性能有了很大的改善。  相似文献   

5.
用两步生长的方法在醋酸锌和六亚甲基四胺水溶液中生长ZnO纳米棒阵列,然后以ZnO纳米棒阵列为模板,在Na2S水溶液中硫化0.5~6 h形成ZnO/ZnS纳米结构.用XRD,SEM和TEM表征了ZnO/ZnS核/壳纳米结构的晶体结构、表面形貌.研究了ZnO/ZnS核/壳纳米结构的形态及其转变的模式.在硫化过程中,ZnO首先形成ZnO/ZnS核/壳纳米棒,随着硫化程度的增强,核/壳结构顶部出现空洞,空洞扩展形成管状结构,进一步硫化,管状结构坍塌.硫化形成的ZnO/ZnS结构的形态不仅依赖于初始纳米棒的直径大小和硫化时间的长短,还依赖于纳米棒的分布密度.  相似文献   

6.
王彩凤 《光电子.激光》2010,(12):1805-1808
用脉冲激光沉积法(PLD)在多孔硅(PS)衬底上生长ZnS薄膜,分别在300℃、400℃和500℃下真空退火。用X射线衍射(XRD)和扫描电子显微镜(SEM)研究了退火对ZnS薄膜的晶体结构和表面形貌的影响,并测量了ZnS/PS复合体系的光致发光(PL)谱和异质结的I-V特性曲线。研究表明,ZnS薄膜仅在28.5°附近存在着(111)方向的高度取向生长,由此判断薄膜是单晶立方结构的-βZnS。随着退火温度的升高,-βZnS的(111)衍射峰强度逐渐增大,且ZnS薄膜表面变得更加均匀致密,说明高温退火可以有效地促进晶粒的结合并改善结晶质量。ZnS/PS复合体系的PL谱中,随着退火温度升高,ZnS薄膜的自激活发光强度增大,而PS的发光强度减小,说明退火处理更有利于ZnS薄膜的发光。根据三基色叠加的原理,ZnS的蓝、绿光与PS的红光相叠加,ZnS/PS体系可以发射出较强的白光。但过高的退火温度会影响整个ZnS/PS体系的白光发射。ZnS/PS异质结的I-V特性曲线呈现出整流特性,且随着退火温度的升高其正向电流增加。  相似文献   

7.
ZnS/PS体系的结构和发光特性   总被引:3,自引:2,他引:1  
用电化学阳极氧化法制备了不同孔隙率的多孔硅(PS)样品,然后用脉冲激光沉积(PLD)法在其表面生长ZnS薄膜,研究ZnS/Ps复合体系的结构和发光特性.X射线衍射仪(XRD)结果表明,ZnS薄膜的生长具有高度择优取向,在28.5°附近有一很强的衍射峰,对应于β-ZnS(111)晶向.扫描电子显微镜像(SEM)显示,ZnS薄膜表面很不平整并出现空洞,这是由于衬底PS的表面粗糙所致.ZnS/PS复合体系的光致发光(PL)谱的高斯拟合分峰表明,随着衬底孑L隙率的增大,在样品B和C的发光谱中,在光谱中间520 nm左右都出现了一个新的绿色发光峰,归因于ZnS的缺陷中心发光.位于480 nm附近的ZnS的蓝光和520 nm附近的ZnS的绿光以及位于600 nm处的PS的橙红光叠加在一起,整个znS/PS复合体系呈现出较强的白光.  相似文献   

8.
采用水热法制备了Mn掺杂的ZnS纳米晶,通过X线衍射(XRD)谱、扫描电子显微镜(SEM)、磁性曲线、光致发光谱对其微结构、表面形貌、磁学及光学性能进行了探究。结果表明,ZnS∶Mn纳米晶为球形闪锌矿结构,晶体颗粒大小均匀,平均粒径为20nm。在外加磁场的作用下,ZnS∶Mn纳米晶的磁化强度随着Mn掺杂浓度增加而增加。当掺杂x(Mn)=2%(摩尔分数)时,ZnS∶Mn纳米晶发射光谱的强度最强;当x(Mn)=10%时,离子间相互碰撞引发了浓度猝灭效应及高浓度Mn引入的大量缺陷,使光致发光谱的强度减小。  相似文献   

9.
利用脉冲激光沉积(PLD)分别在Si片和多孔Si衬底上沉积了ZnS薄膜,考察衬底对ZnS薄膜结构和发光性能的影响。X射线衍射(XRD)和扫描电镜(SEM)测量表明,两种衬底上制备的ZnS薄膜均沿立方相结构β-ZnS(111)晶向择优取向生长。多孔Si衬底上生长的ZnS薄膜表面有很多凹坑,而Si衬底上生长的ZnS薄膜表面相对比较平整。光致发光(PL)谱显示,ZnS薄膜沉积后,多孔Si的发光峰强度减小且峰位发生蓝移。根据ZnS薄膜具有较高透射率的特点,把透射出ZnS的多孔Si的橙红光和ZnS的发光叠加,多孔Si/ZnS纳米薄膜复合体系在可见光区有很强的PL现象。  相似文献   

10.
采用二次阳极氧化法制备了多孔氧化铝(AAO)模板。利用此AAO模板,采用电化学沉积的方法制备了ZnS∶Mn纳米晶。对AAO模板进行了扫描电子显微镜(SEM)测试。结果显示,AAO模板孔洞分布均匀,孔径基本一致。对ZnS∶Mn纳米晶进行了SEM测试和荧光光谱(PL)测试,SEM测试结果表明,在AAO模板上沉积了一层ZnS∶Mn纳米晶,PL谱结果显示Mn离子成功地掺杂进ZnS。从电负性角度讨论了ZnS∶Mn纳米晶的形成机制。  相似文献   

11.
Binary CdS and ZnS and ternary CdZnS alloy quantum dots (QDs) were synthesized via a simple, inexpensive, and reproducible route using sulfur, cadmium stearate, and zinc stearate as precursors and N-oleoylmorpholine as the reaction medium and solvent. Both binary and ternary QDs exhibited a narrow size distribution and high crystallinity as confirmed TEM and HRTEM images. The alloy QDs exhibited excellent composition-dependent optical properties and a narrow full-width at half maximum of 19–21 nm. UV-visible absorbance and photoluminescence (PL) emission spectra of the CdZnS QDs showed a blue shift during growth, indicating the formation of alloy QDs. ZnS shells were successively coated onto the alloy core via decomposition of zinc diethyldithiocarbamate at a relatively low temperature. The CdZnS/ZnS core/shell QDs obtained showed a significant increase in size and exhibited strong band edge emission with a significant increase in PL quantum yield. XRD patterns revealed that all the QDs had a zinc blende structure. The QD diffraction peaks gradually shifted to higher angle in the order CdS < CdZnS < CdZnS/ZnS < ZnS. The mechanism for the synthesis of CdZnS alloy and CdZnS/ZnS core/shell QDs is discussed.  相似文献   

12.
采用水热法合成了具有花状纳米结构的ZnS:Cu粉末.利用X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和荧光光谱仪研究了在不同正硅酸四乙酯(TEOS)含量的条件下制备的样品的物相、形貌与光致发光(PL)性质.测试结果表明:制备的ZnS:Cu样品都具有立方相闪锌矿结构;由于TEOS分子...  相似文献   

13.
ZnS/PS复合体系的制备和性能表征   总被引:1,自引:0,他引:1  
以电化学阳极氧化法制备的多孔硅(PS)为衬底,用脉冲激光沉积方法分别在200和300℃下制备了ZnS薄膜,得到ZnS/PS复合体系。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、荧光分光光度计分别对ZnS/PS复合体系的晶体结构、形貌和光致发光(PL)特性进行了研究。XRD结果表明,制备的ZnS薄膜呈立方相晶体结构,沿β-ZnS(111)晶向择优取向生长,生长温度较高的样品的XRD衍射峰强度较大。SEM图像显示,生长温度较高的ZnS薄膜表面较致密平整。室温下的PL谱表明,沉积ZnS薄膜后,PS的发光峰发生蓝移。较高的生长温度下,ZnS的自激活发光强度较大,而PS的红光强度较低且峰位红移。根据三基色叠加的原理,ZnS的蓝绿光与PS的红光叠加在一起,ZnS/PS复合体系呈现出较强的白光发射,为固态白光发射器件的实现开辟了一条新的捷径。  相似文献   

14.
We herein report the fabrication of highly fluorescent yellow emitting nanophosphors using CdSe/ZnS quantum dots (QDs) dispersed in polymethyl methacrylate (PMMA). The QDs were synthesised via a simple, non-phosphine and one pot synthetic method in the absence of an inert atmosphere. The as-prepared nanocrystallites were characterised by Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) and photoluminescence spectroscopy, energy-dispersive spectroscopy (EDS), Raman spectroscopy, transmission electron microscopy (TEM) and high resolution TEM (HRTEM) microscopy. Optical analysis confirmed that the as-synthesised CdSe/ZnS QDs were of high quality with sharp absorption peaks, bright luminescence, narrow emission width and high PL quantum yield (up to 74%). The electron microscope images showed that the QDs are small and spherical in shape with narrow size distributions while the HRTEM micrograph confirmed the high crystallinity of the material. The Raman analysis of the QDs revealed the formation of core–shell structure and the energy dispersive spectroscopy confirmed the presence of the corresponding elements (i.e., Cd, Se, Zn and S). The dispersion of the core–shell QDs in PMMA matrix led to the red-shifting of the emission position from 393 nm in the neat PMMA to 592 nm in the nanocomposite. The fabricated highly fluorescent yellow emitting PMMA–CdSe/ZnS core–shell QDs polymer nanocomposite film display excellent optical properties without loss of luminescence. Furthermore, the as-synthesised organic soluble CdSe/ZnS QDs were successfully converted into highly water soluble QDs after ligand exchange with mercaptoundecanoic acid (MUA) without the loss of their emission properties. The simplicity of the method and the quality of the as-synthesised nanocomposite make it a promising material for the large scale fabrication of diverse optical devices.  相似文献   

15.
Water-soluble ZnS/ZnO/CdS (0.1–0.5 M) nanocomposites were successfully synthesized by the chemical precipitation method in air. X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet–visible (UV–vis), photoluminescence (PL) and thermo gravimetric-differential thermal analysis (TG-DTA) were used to characterize the synthesized products. It is found that the ZnS/ZnO/CdS (0.1–0.5 M) core–shell nanocomposite is cubic and hexagonal mixed structure. TEM results showed the prepared nanocomposites are monodispersed and uniform in size. It is confined within 4.3–5.6 nm range. UV–vis absorption spectra were confined growth process of multi shells on ZnS. It showed a red shift with respect to the shells thickness. Fluorescence measurement showed the emission band which exists in the visible region. Stability and phase transition were identified by TG-DTA analysis. The results show an improved florescence property, indicating their potential applications in biological labeling.  相似文献   

16.
Mn-doped ZnS nanoparticles (NPs) were prepared with dopants at various concentrations using a facile, simple and inexpensive wet chemical method at room temperature. The physicochemical properties of NPs were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible absorption spectroscopy (UV–vis) and photoluminescence (PL). XRD analysis confirmed formation of ZnS with zinc blende structure and average crystallite size of about 2 nm. TEM analysis revealed formation of hyperfine NPs with rather good uniformity. The room temperature photoluminescence (PL) spectrum of ZnS:Mn2+ exhibited an orange-red emission around 600 nm. The maximum PL intensity was observed for 7.5% Mn doped ZnS. The photocatalytic performance of ZnS:Mn2+ was successfully demonstrated for degradation of three different model dyes (i.e. Rhodimine B (Rh. B), Bromocresol Green (BCG) and Bromochlorophenol Blue (BCB)). The results revealed that not only was there a remarkable difference in photocatalytic performance of Mn doped ZnS for all three different dyes at different dopant concentrations but also photocatalytic activity was decreased by Mn doping.  相似文献   

17.
在电化学阳极氧化法制备的多孔硅(porous silicon,PS)衬底上用脉冲激光沉积法(pulsed laser deposition,PLD)在250℃和350℃下生长ZnS薄膜。XRD图样显示,制备的ZnS薄膜沿β—ZnS(111)方向择优生长,较高的生长温度下,衍射峰强度较大。SEM结果表明,250℃生长的Z...  相似文献   

18.
Efficient and photostable ZnS‐passivated CdS:Mn (CdS:Mn/ZnS core/shell) nanocrystals were synthesized using reverse micelle chemistry. CdS:Mn/ZnS core/shell nanocrystals exhibited much improved luminescent properties (quantum yield and photostability) over organically (n‐dodecanethiol‐) capped CdS:Mn nanocrystals. This is the result of effective, robust passivation of CdS surface states by the ZnS shell and consequent suppression of non‐radiative recombination transitions. The dependence of photoluminescence (PL) intensity has been observed as a function of UV irradiation time for both organically and inorganically capped CdS:Mn nanocrystals. Whereas organically capped CdS:Mn nanocrystals exhibit a significant reduction of PL intensity, CdS:Mn/ZnS core/shell nanocrystals exhibit an increased PL intensity with UV irradiation. XPS (X‐ray photoelectron spectroscopy) studies reveal that UV irradiation of CdS:Mn/ZnS nanocrystals in air atmosphere induces the photo‐oxidation of the ZnS shell surface, leading to the formation of ZnSO4. This photo‐oxidation product is presumably responsible for the enhanced PL emission, serving as a passivating layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号