首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
生物素-亲和素放大酶联免疫吸附法测定氯胺酮   总被引:1,自引:0,他引:1  
建立了检测氯胺酮的生物素-亲和素放大酶联免疫吸附测定法(BA-ELISA)。实验最佳测定条件:抗原包被浓度为2.0mg/L、氯胺酮单克隆抗体浓度为10.2mg/L,生物素化羊抗小鼠IgG(Biotin-IgG)和酶标链霉亲和素(SA-HRP)的最佳反应浓度分别为0.29和1.0mg/L。在此优化条件下,方法的线性范围为0.1~1000μg/L;检出限为0.03μg/L。氯胺酮生物样品的加标回收率为94%~102%。与酶标二抗体系ELISA法相比,BA-ELISA具有更高的灵敏度,适于低浓度氯胺酮的检测。  相似文献   

2.
链亲和素-磁性微粒的制备及其应用   总被引:2,自引:0,他引:2       下载免费PDF全文
通过物理吸附和共价作用机制, 制备两种链亲和素-磁性微粒, 即链亲和素-金磁微粒和链亲和素-氨基磁粒, 并对其在不同缓冲液中的稳定性进行研究; 采用酶抑制法测定两种链亲和素-磁性微粒对游离生物素的结合能力; 分别以紫外吸收和固相核酸杂交方法, 测定两种链亲和素-磁性微粒对生物素标记寡核苷酸探针的固定化容量及活性, 并与Dynabeads®M-270 Streptavidin进行比较. 结果表明: 通过物理吸附作用制备的链亲和素-金磁微粒, 适用于核酸杂交与检测常用的STE (Tris-NaCl-EDTA) 缓冲系统, 通过共价作用形成的链亲和素-氨基磁粒, 适用于STE和磷酸盐(PBS)缓冲系统; 1 mg链亲和素-金磁微粒和链亲和素-氨基磁粒对游离生物素的最大结合容量分别为4950和5115 pmol; 对生物素标记寡核苷酸探针(24 mer) 的结合容量分别为2839和2978 pmol, 测定结果均是Dynabeads®M-270 Streptavidin的6~7倍; 与FITC-标记互补寡核苷酸的杂交结果表明, 固定于链亲和素-磁性微粒表面的寡核苷酸探针保持了较好的生物学活性.  相似文献   

3.
制备了一种能固载目标蛋白质, 却没有非特异性蛋白质吸附的高分子涂层. 该涂层是可生物降解的油水两亲性的三嵌段聚合物, 即生物素偶联的聚乙二醇-聚丙交酯-聚赖氨酸共聚物. 将高分子溶解于N,N-二甲基甲酰胺中, 并涂布在预先包被了聚赖氨酸的脱脂玻片基质上, 形成高分子涂层, 在其表面包被一层由明胶和聚N-乙烯基吡咯烷酮组成的封闭剂. 使用酶标免疫分析法, 对高分子涂层表面的生物活性进行评价. 依次将辣根过氧化物酶标记的链亲和素和生物素偶联的小鼠球蛋白抗原和碱性磷酸酯酶标记的马抗小鼠抗体固载在高分子涂层表面上, 通过标记酶与底物作用生色. 分析结果表明, 经过封闭以后, 生物素化的高分子涂层表面能够排斥非特异性的蛋白质; 同时特异性蛋白质之间(如生物素和链亲和素之间、抗原和抗体之间)的相互作用依然保留, 并且固定在表面的蛋白质依然保留其生物活性. 因此生物素化的聚乙二醇-聚丙交酯-聚赖氨酸三嵌段高分子可以作为生物活性材料, 用于蛋白质固载和蛋白质分离及分析.  相似文献   

4.
发展了一种可用于快速检测胰腺癌中K-ras癌基因点突变的电化学发光-聚合酶链式反应(ECL-PCR)分析方法。该法采用三联吡啶钌标记的上游引物和生物素标记的下游引物对目的片段进行PCR扩增;再采用限制性内切酶MvaI对扩增产物进行酶切。由于野生型样品和突变型样品间存在酶切位点的变化,其中只有野生型样品能被切断;通过生物素与链霉亲和素包被的磁珠连接,将生物素标记的DNA片段收集到检测池中,进行电化学发光检测。采用该法对13例胰腺癌组织中的K-ras癌基因第12位密码子进行点突变分析,只需要10μL样品、20min孵育时间和30s采集时间,就可得出其中有12例存在点突变,点突变率为92.3%。本方法操作简便、安全、快速、灵敏,可用于检测任何一种导致限制性内切酶位点改变的基因点突变。  相似文献   

5.
设计合成融合表达标签谷胱甘肽S-转移酶(GST)的二价亲和标记试剂,用于功能化磁珠后位点选择性固定化标签GST,为磁分离筛选配体混合物库提供固定化融合靶蛋白的候选方案。 为减少疏水配体在标签GST活性位点的结合,需同时占据标签GST双活性中心内疏水结合位点并发生共价修饰的二价亲和标记试剂。以双苯环为疏水定位基、溴乙酰基为巯基修饰基团、羧基为连接官能团得单价标记试剂,以二乙基三胺为连接臂将单价标记试剂与连接臂两端伯胺连接得标签GST的对称二价亲和标记试剂,再以线性三胺连接臂中间的氨基与羧基磁珠偶联得功能化磁珠。 表征目标化合物对标签GST的标记动力学、结合比;功能化磁珠对标签GST的不可逆固定化动力学和固载容量,及将磁珠表面二价亲和标记试剂转变成还原型谷胱甘肽(GSH)加合物后对标签GST可逆固定化的效果;以碱性磷酸酶及疏水荧光配体为模型考察磁珠固定化标签GST后的非特异结合。 目标化合物对标签GST半抑制浓度为(22±0.2) μmol/L,其与GSH的饱和加合物半抑制浓度为(0.41±0.06) μmol/L,二者与标签GST二聚体结合比接近1:1。 功能化磁珠对标签GST不可逆及可逆固定化的容量均接近25 mg/g磁珠。 偶联GST的磁珠对蛋白非特异吸附很弱,再进一步用单价亲和标记试剂和GSH加合物封闭固定化标签GST剩余的活性位点后对疏水小分子也无显著结合。 结果表明,所设计二价亲和标记试剂功能化磁珠适合用于标签GST及其融合表达蛋白的位点选择性固定化。  相似文献   

6.
基于磁珠的可见光检测微阵列信号的新方法   总被引:1,自引:0,他引:1  
以磁珠作为标记物,提出了一种在微阵列上检测核酸的新方法。该法基于生物素同链霉亲和素的亲和作用,利用磁珠的超顺磁性和宏观可见特性,使得杂交结果可在普通的光学显微镜或放大镜下检测,甚至肉眼可见。以合成探针为对照,用参比荧光标记染料Cy3标记方法,对这种新方法的检出限进行了研究,并在此基础上采用大肠杆菌16s rDNA的PCR产物作为样品,进行了细菌检测的尝试,取得了较好的实验结果。本法所得的实验结果易于观测,无需采用大型的荧光检测仪器,因而大大降低了检测成本,与其它可见光检测方法(如金胶银染等)相比,具有方便、快捷的特点。这种新方法在传染病检测和环境监测中将具有广阔的应用前景。  相似文献   

7.
基于荧光标记和核酸适配子识别可卡因,建立了简单、灵敏的可卡因新型荧光分析法.在微孔板表面组装亲和素-生物素化可卡因适配子-FAM标记可卡因适配子互补短链复合物,根据加入可卡因前后荧光强度的变化来定量可卡因.实验考察了微孔板包被亲和素浓度、生物素标记适配子用量、FAM标记可卡因适配子互补短链用量、反应温度、反应时间等因素...  相似文献   

8.
使用生物分子相互作用分析(Biomolecular interaction analysis,BIA)技术实时监测了在链霉素和素表面层层组装亲和素-生物素化抗体多层膜的过程,结果表明,通过链霉素和素与生物素之间的强亲和作用,能够在表面形成均一的多层膜,并用实时BIA技术求得了每层蛋白质的表面浓度,对于生物素化抗体,单层吸附表面浓度为1.32ng/mm^2;对于链霉亲和素,单层吸附表面浓度为2.93ng/mm^2。同时对蛋白质在表面的排列状态进行了探讨。  相似文献   

9.
构建了一种基于菲涅耳反射原理的光纤生物传感器,以生物素-链霉亲和素体系为模型验证了其进行生物传感的可行性.首先,利用硅烷偶联剂,在切平整的普通单模光纤端面修饰上生物素,将其作为吸附链霉亲和素的生物敏感膜.然后,将光纤端面浸入不同浓度的链霉亲和素溶液中,测量宽带光源经过光纤端面反射后的光谱.实验结果表明,反射光谱的相对功率与链霉亲和素溶液浓度之间呈线性关系,测量得到灵敏度为15.38 dB/(mg/mL).用牛血清白蛋白代替链霉亲和素,测量得到的反射光谱曲线与在之前浸入生物素后的反射光谱曲线基本重合,证明此生物传感器的选择性好.最后以人免疫球蛋白G与山羊抗人免疫球蛋白G体系验证了此结构进行生物传感的实用性.  相似文献   

10.
以核-壳型结构的Fe_3O_4@Au微粒为载体,采用亲和素-生物素系统对葡萄糖氧化酶的固定化进行研究。表征结果表明,固定化酶呈现不规则圆球形,直径为80~180 nm左右。通过单一因素实验,探讨出葡萄糖氧化酶固定化的最优条件:磷酸盐缓冲溶液pH为4、固定化时间为40 min、固定化温度为30℃。游离酶与固定化酶的存贮稳定性表明,固定化葡萄糖氧化酶显示了更好的稳定性,可能与固定酶结构中存在的笼状结构有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号