首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Household energy preferences for cooking in urban Ouagadougou, Burkina Faso   总被引:2,自引:0,他引:2  
Boukary Ouedraogo   《Energy Policy》2006,34(18):3787-3795
  相似文献   

2.
This study uses a national household living standard survey and bivariate probit to assess how variations in tenure mode influence the choice of energy sources for lighting and cooking. Results indicate that tenure mode has heterogeneous effect on the lighting and cooking energy choice. Relative to owner-occupied unit, renters use other fuel (firewood, candle, and crop residue) for lighting and use modern (LPG), transition (charcoal), and other fuel (electricity, crop residue, kerosene, sawdust, and, animal waste) for cooking. By dividing the sample into income quartiles, the results showed that renters in the fourth quartiles use electricity and LPG (modern fuel) but less likely to use dirty fuel (fuelwood) for cooking. Tenancy agreement, ownership right and preferences, and the structure of a building are the plausible mechanism that may be accounting for the heterogeneity in the adoption of lighting and cooking energy sources. The empirical implications of the results are discussed.  相似文献   

3.
As part of a programme on ‘access to clean cooking alternatives in rural India’, induction stoves were introduced in nearly 4000 rural households in Himachal Pradesh, one of the few highly electrified states in India. Analysis of primary usage information from 1000 rural households revealed that electricity majorly replaced Liquid Petroleum Gas (LPG), generally used as a secondary cooking fuel, but did not influence a similar shift from traditional mud stoves as the primary cooking technology. Likewise, the shift from firewood to electricity as a primary cooking fuel was observed in only 5% of the households studied. Country level analysis indicates that rural households falling in lower monthly per capita expenditure (MPCE) classes have lesser access to electricity and clean cooking options than those falling in higher MPCE classes. Again, only three states in India with high levels of rural household electrification report consumption statuses more than 82 kWh per month (the estimated mean for electricity consumption by induction stoves). Overall, the results of the study indicate that induction stoves will have limited potential in reducing the consumption of firewood and LPG if included in energy access programmes, that too only in regions where high levels of electrification exist.  相似文献   

4.
Bio fuels are still a major source for cooking by many households in developing countries such as India causing significant disease burden due to indoor air pollution. While household income influences the choice of fuel the policies that affect accessibility and price of fuels also have an important role in determining the fuel choice. This study analyzes the pollution–income relationship for the period 1983–2000, separately across rural and urban households in India based on unit record data on fuel consumption obtained through National Sample Surveys. While a non-monotonic relationship is observed in rural India in both the decades, in urban India a similar relationship is observed only for the initial period indicating faster transition towards ‘cleaner’ fuels mainly enabled by policies that have been pro-urban. The study also finds that the impact of household size and composition on bio fuels is more negative than for clean fuels and is increasingly negative over time possibly due to greater awareness about the ill effects of such fuels.  相似文献   

5.
Bioenergy is the energy released from the reaction of organic carbon material with oxygen. The organic material derived from plants and animals is also referred to as biomass. Biomass is a flexible feedstock capable of conversion into solid, liquid and gaseous fuels by chemical and biological processes. These intermediate biofuels (such as methane gas, ethanol, charcoal) can be substituted for fossil based fuels. Wood and charcoal are important as household fuels and for small scale industries such as brick making, cashew processing etc. The scarcity of biofuels has far reaching implications on the environment. Hence, expansion of bioenergy systems could be influential in bettering both the socio-economic condition and the environment of the region. This paper examines the present role of biomass in the region’s (Uttara Kannada District, Karnataka State, India) energy supply and calculates the potential for future biomass provision and scope for conversion to both modern and traditional fuels. Based on the detailed investigation of biomass resource availability and demand, we can categorise the Uttara Kannada District into two zones (a) Biomass surplus zone consisting of Taluks mainly from hilly area (b) Biomass deficit zone, consisting of thickly populated coastal Taluks such as Bhatkal, Kumta, Ankola, Honnavar and Karwar. Fuel wood is mainly used for cooking and horticulture residues from coconut, arecanut trees are used for water heating purposes. Most of the households in this region still use traditional stoves where efficiency is less than 10%. The present inefficient fuel consumption could be brought down by the usage of fuel efficient stoves (a saving of the order of 27%). Availability of animal residues for biogas generation in Sirsi, Siddapur, Yellapur Taluks gives a viable alternative for cooking, lighting fuel and a useful fertiliser. However to support the present livestock population, fodder from agricultural residues is insufficient in these Taluks. There is a need to supplement the fodder availability with fodder crops as successfully tried in Banavasi village by some progressive farmers.  相似文献   

6.
A mathematical model is developed and presented for calculating the energy usage and costs for the dry milling corn-ethanol production process. The model is formulated into a spreadsheet to facilitate the study of the process. While considering the whole process, the model focuses on the primary energy-consuming cooking and distillation processes. This model is a feed-backwards model, which means process input requirements are calculated based on user-entered values for total annual plant production and various process parameters. Based on these input requirements, the total energy usage and the cost and amount of fuel used during the process are calculated. The accuracy of the model was verified through comparisons between modelling results and published data. This model can be used as a source for investigating other potential energy sources, such as the incorporation of solar energy and wind energy, for use in the ethanol production process.  相似文献   

7.
Energy is essential to attain the quality of life and economic prosperity in a society. In the rural areas of India, cooking dominates the aggregate consumption of energy. This energy demand is mostly met by biomass fuels, which have many associated inherent disadvantages. Hence, it is important to understand the decision making process in rural households regarding the choice of cooking fuels. For this purpose, household information using the 61st round of National Sample Survey is analyzed for the rural parts of India. The logistic regression model is used to explain the determinants of clean fuel use for cooking purposes. The study shows that number of educated females between 10 and 50 years of age, average household education index, regular salary, and monthly per capita consumption expenditure have a positive and significant impact on probability of using clean cooking fuels, whereas possessing a Below Poverty Line ration card, belonging to reserved caste categories, family size and size of farm land have a significant negative linkage.  相似文献   

8.
A survey of household energy consumption pattern was carried out in a village of Jhajjhar district of Haryana, India in the year 2007. The households surveyed covered heterogeneous population belonging to different income, educational and social groups. There was more availability and utilization of solid biomass fuels as energy resources in domestic sector as compared to the commercial fuels. Dung cakes, crop residues and firewood were found to be the three main fuels used for cooking, though LPG was also used along with biomass fuels. But complete conversion to cleaner fuels has not taken place yet even in households that has been using LPG for many years. Income was an important factor determining the choice of fuel for cooking, but there were some socio-cultural factors which were equally important in making fuel preferences at household level.  相似文献   

9.
The unsustainable use of fossil fuels has led to increased awareness and widespread research on the accessibility of renewable energy resources such as biogas. Biogas is a methane rich gas that is produced by anaerobic fermentation of organic material. Despite its potential to replace biomass in Africa, where over 70% of the households use wood fuel and agricultural waste for cooking, biogas technology has not been adopted by Sub-Saharan African countries compared to their Asian counterparts. This paper examines the socioeconomic constraints to adoption of biogas in Sub-Saharan Africa and explores factors that could enhance adoption of the technology. These include standardization and quality control, as well as an approach of integrated farming using biogas and slurry. The article recommends mobilization of local and external funds to promote biogas, use of ready to use funds such as the Clean Development Mechanisms in overcoming the initial construction costs of biogas units, and formation of user and disseminator associations to reduce costs by joint procurement and linkage to finance. It further advocates the promotion of multiple uses of biogas for purposes other than cooking and lighting. It is expected that widespread adoption of the technology could lead to self-sufficiency in household energy provision for cooking. This would facilitate environmental management and economic development in Sub-Saharan Africa.  相似文献   

10.
Road transport is responsible for a large and growing share of CO2 emissions in most countries. A number of new fuel‐efficient vehicle technologies and renewable transport fuels are possible alternatives to conventional options but their deployment relies strongly on different policy measures. Even though a future higher use of transport biofuels and electric vehicles is likely to increase the interaction between the transportation sector and the stationary energy system (heat, power, etc.), these systems are often analysed separately. In this study, a transport module is developed and integrated into the MARKAL_Nordic energy system model. The transport module describes a range of vehicle technologies and fuel options as well as different paths for conversion of primary energy resources into transport fuels. The integrated model is utilized to analyse the impact of transport fuel tax designs on future cost‐effective fuel and technology choices in the Swedish transportation sector, as well as the consequences of these choices on system costs and CO2 emissions. The model, which is driven by cost‐minimization, is run to 2050 with various assumptions regarding transport fuel tax levels and tax schemes. The results stress the importance of fuel taxes to accelerate the introduction of fuel‐efficient vehicle technologies such as hybrids and plug‐in hybrids. Tax exemptions can make biofuels an economically favourable choice for vehicle users. However, due to limitations in biomass supply, a too strong policy‐focus on transport biofuels can lead to high system costs in relation to the CO2 abatement achieved. The modelling performed indicates that the effects caused by linkages between the transportation sector and the stationary energy system can be significant and integrated approaches are thus highly relevant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
India's energy challenges are multi-pronged. They are manifested through growing demand for modern energy carriers, a fossil fuel dominated energy system facing a severe resource crunch, the need for creating access to quality energy for the large section of deprived population, vulnerable energy security, local and global pollution regimes and the need for sustaining economic development. Renewable energy is considered as one of the most promising alternatives. Recognizing this potential, India has been implementing one of the largest renewable energy programmes in the world. Among the renewable energy technologies, bioenergy has a large diverse portfolio including efficient biomass stoves, biogas, biomass combustion and gasification and process heat and liquid fuels. India has also formulated and implemented a number of innovative policies and programmes to promote bioenergy technologies. However, according to some preliminary studies, the success rate is marginal compared to the potential available. This limited success is a clear indicator of the need for a serious reassessment of the bioenergy programme. Further, a realization of the need for adopting a sustainable energy path to address the above challenges will be the guiding force in this reassessment. In this paper an attempt is made to consider the potential of bioenergy to meet the rural energy needs: (1) biomass combustion and gasification for electricity; (2) biomethanation for cooking energy (gas) and electricity; and (3) efficient wood-burning devices for cooking. The paper focuses on analysing the effectiveness of bioenergy in creating this rural energy access and its sustainability in the long run through assessing: the demand for bioenergy and potential that could be created; technologies, status of commercialization and technology transfer and dissemination in India; economic and environmental performance and impacts; bioenergy policies, regulatory measures and barrier analysis. The whole assessment aims at presenting bioenergy as an integral part of a sustainable energy strategy for India. The results show that bioenergy technology (BET) alternatives compare favourably with the conventional ones. The cost comparisons show that the unit costs of BET alternatives are in the range of 15–187% of the conventional alternatives. The climate change benefits in terms of carbon emission reductions are to the tune of 110 T C per year provided the available potential of BETs are utilized.  相似文献   

12.
Energy shortages in rural areas have several far-reaching ill-consequences. The scarcity of fuelwood forces people to use animal dung and crop residue as fuel, reducing the soil fertility and productivity. Progressive deforestation adversely affects the environment. Women and children in villages walk long distances and spend more time in searching for fuel. For effective energy planning, it is necessary to understand the energy-use patterns of different categories of farmers in village ecosystems and the influence of income and family size on it. This paper reports such a study conducted in a village in the State of Andhra Pradesh in India where dryland agriculture is pursued. The household energy-use patterns observed in the village clearly show that most energy is utilized for basic survival tasks such as cooking, cleaning, fetching fuel, water and other necessities of life. Commercial energy, which accounts for 6.5% of the total energy consumption of households, is used exclusively for lighting. A number of measures have been suggested for enhancing the efficiency of energy use in rural household systems, which include the design and installation of a fuel-efficient improved chulha, with dampers, baffle and a grate in the combustion chamber, installation of family size biogas plants, planting of hardwood trees on field bunds, energy plantation on marginal and waste lands, utilization of solar photovoltaics for power generation, installation of windmills for lifting water, and briquetting and pelletization of groundnut shell, and farm and forest residues. A well-knit and coordinated infrastructure has to be developed for successful implementation of the above measures. Local skill and participation, especially of artisans and women, should be encouraged and should be supplemented by appropriate training and monitoring. An energy utilization system based on local resources can improve productivity and standards in all spheres of rural living.  相似文献   

13.
《Energy Policy》2006,34(17):3351-3358
The South African government is introducing a poverty-reduction policy that will supply households with a monthly 50 kWh free basic electricity (FBE) subsidy. We show that FBE distorts the energy choices of poor households by encouraging them to cook with electricity, whereas alternatives such as liquefied petroleum gas (LPG) can deliver a similar cooking service at a much lower cost to society. An alternative energy scheme, such as providing households with clean energy credits equivalent in value to the FBE's cost, could deliver additional energy services worth at least 6% of total household welfare (and probably much more) at no additional public cost; those benefits are so large that they would cover the entire cost of LPG fuel needed to implement the scheme. The analysis is extremely sensitive to the coincidence of electric cooking with peak power demand on the South African grid and to assumptions regarding how South Africa will meet its looming shortfall in peak power capacity. One danger of FBE is that actual peak coincidence and the costs of supplying peak power could be much less favorable than we assume, and such uncertainties expose the South African power system to potentially very high costs of service.  相似文献   

14.
India′s energy situation is characterized by increasing energy demand, high fossil fuel dependency, large import shares, and significant portion of population deprived of modern energy services. At this juncture, natural gas, being the cleanest fossil fuel with high efficiency and cost effectiveness, is expected to play an important role. India, with only 0.6% of proven world reserves, is not endowed with adequate natural gas domestically. Nevertheless, there are gas reserves in neighbouring regions which gives rise to the prospects of three cross border gas pipeline projects, namely, Iran–Pakistan–India, Turkmenistan–Afghanistan–Pakistan–India, and Myanmar–Bangladesh–India. This study is a political analysis of these pipeline projects. First, it provides justification on use of natural gas and promotion of cross border energy trade. Then it examines these three pipeline projects and analyses the security concerns, role of different actors, their positions, shifting goals, and strategies. The study develops scenarios on the basis of changing circumstances and discusses some of the pertinent issues like technology options for underground/underwater pipelines and role of private players. It also explores impact of India′s broader foreign relations and role of SAARC on the future of pipelines and proposes energy induced mutually assured protection (MAP) as a concept for regional security.  相似文献   

15.
Dynamics of rural energy access in India: An assessment   总被引:1,自引:0,他引:1  
P. Balachandra 《Energy》2011,36(9):5556-5567
India’s rural energy challenges are formidable with the presence of majority energy poor. In 2005, out of a rural population of 809 million, 364 million lacked access to electricity and 726 million to modern cooking fuels. This indicates low effectiveness of government policies and programs of the past, and need for a more effective approach to bridge this gap. However, before the government can address this challenge, it is essential that it gain a deeper insight into prevailing status of energy access and reasons for such outcomes. Toward this, we perform a critical analysis of the dynamics of energy access status with respect to time, income and regions, and present the results as possible indicators of effectiveness of policies/programmes. Results indicate that energy deprivations are highest for poorest households with 93% depending on biomass for cooking and 62% lacking access to electricity. The annual growth rates in expansion in energy access are gradually declining from double digit growth rates experienced 10 years back to just around 4% in recent years. Regional variations indicate, on an average, cooking access levels were 5.3 times higher in top five states compared to bottom five states whereas this ratio was 3.4 for electricity access.  相似文献   

16.
Rural population of India constitutes about 70% of the total population and traditional fuels account for 75% of the rural energy needs. Depletion of woodlands coupled with the persistent dependency on fuel wood has posed a serious problem for household energy provision in many parts. This study highlights that the traditional fuels still meet 85–95% of fuel needs in rural areas of Kolar district; people prefer fuel wood for cooking and agriculture residues for water heating and other purposes. However, rapid changes in land cover and land use in recent times have affected these traditional fuels availability necessitating inventorying, mapping and monitoring of bioresources for sustainable management of bioresources. Remote sensing data (Multispectal and Panchromatic), Geographic Information System (GIS), field surveys and non-destructive sampling were used to assess spatially the availability and demand of energy. Field surveys indicate that rural household depends on species such as Prosopis juliflora, Acacia nilotica, Acacia auriculiformis to meet fuel wood requirement for domestic activities. Hence, to take stock of fuel wood availability, mapping was done at species level (with 88% accuracy) considering villages as sampling units using fused multispectral and panchromatic data.  相似文献   

17.
The residential sector plays an important role in the energy system of developing countries. In this paper we introduce a bottom up simulation model for household energy use. The model describes energy demand for several end-use functions based on a set of physical drivers, such as floor space and heating degree days. The model also recognizes different population groups: i.e. urban and rural households, each distinguishing five income quintiles. The model is applied to analyze possible future developments of residential energy use in five developing world regions: India, China, South East Asia, South Africa and Brazil. We find that in each of these regions cooking is currently the main end-use function, but that other functions, such as space heating, cooling and appliances become more important. At the same time, energy consumption slowly shifts towards modern fuels. The model also shows that climate policy can reduce residential energy emissions, but could also slow down the energy transition away from traditional fuels in low income classes.  相似文献   

18.
All the growth-oriented sectors in a developing economy consume enormous energy in their production processes. Steel, aluminium and cement are the key manufacturing industries in India which provide inputs to various other sectors such as construction, transportation, power transmission, etc. As a result, their demand is consistently rising. These industries are heavily energy-intensive and use raw materials such as iron ore, coal, electricity, steam, and fuel oil, whose supply can act as severe production constraints over a period of time and can hinder sustainable development. Hence it becomes imperative for these industries to continuously innovate more energy efficient techniques. This paper makes a foray into the energy demand for these industries and explores the potential of any future reduction in their energy consumption. The paper offers a projection scenario for 2001–2031 (based on the MARKAL Modeling exercise for India) for possible catching up in reduction in energy consumptions in these sectors under alternative situations. The analysis suggests the existence of some plausible energy efficiency enhancing techniques in these industries. Exploring these options will definitely ensure cost effectiveness and competitiveness of these three key sectors in the global market.  相似文献   

19.
This paper provides an overview analysis of fuelwood utilization in the commercial cooking sector. Cultural, market and logistic factors that may weaken the explanatory power of the energy ladder hypothesis are highlighted. Additionally, gender issues and health and environmental aspects related to fuelwood use in cities are explored. The analysis is developed as from the viewpoint of the use of different fuels for cooking in urban areas, focusing on commercial establishments. Evidences were observed in the pizza market in the city of São Paulo, Brazil, demonstrating that consumer expectations, expressed by means of classical market pressure mechanisms, can markedly influence this commercial cooking niche and consist in an important driving force for its energy choice. The city has the second largest pizza market in the world, characterized by the commercialization of 40 million units of the product per month in over 5000 commercial establishments. Interviews conducted in 270 of these establishments reveal that 88% use fuelwood ovens despite its lower practicality and wide availability of modern energy options such as electricity and liquefied petroleum gas (LPG). The work validates the fuel stacking model, according to which energy diversification – and not substitution –, results from economic development, urbanization and/or a population income growth.  相似文献   

20.
Prospects of biodiesel production from microalgae in India   总被引:3,自引:0,他引:3  
Energy is essential and vital for development, and the global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment. Renewable and carbon neutral biodiesel are necessary for environmental and economic sustainability. Biodiesel demand is constantly increasing as the reservoir of fossil fuel are depleting. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Production of biodiesel using microalgae biomass appears to be a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. Microalgae are photosynthetic microorganisms which convert sunlight, water and CO2 to sugars, from which macromolecules, such as lipids and triacylglycerols (TAGs) can be obtained. These TAGs are the promising and sustainable feedstock for biodiesel production. Microalgal biorefinery approach can be used to reduce the cost of making microalgal biodiesel. Microalgal-based carbon sequestration technologies cover the cost of carbon capture and sequestration. The present paper is an attempt to review the potential of microalgal biodiesel in comparison to the agricultural crops and its prospects in India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号