首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Synaptic plasticity is regarded as the major candidate mechanism for synaptic information storage and memory formation in the hippocampus. Mitogen‐activated protein kinases have recently emerged as an important regulatory factor in many forms of synaptic plasticity and memory. As one of the subfamilies of mitogen‐activated protein kinases, extracellular‐regulated kinase is involved in the in vitro induction of long‐term potentiation (LTP), whereas p38 mediates metabotropic glutamate receptor‐dependent long‐term depression (LTD) in vitro. Although c‐Jun N‐terminal kinase (JNK) has also been implicated in synaptic plasticity, the in vivo relevance of JNK activity to different forms of synaptic plasticity remains to be further explored. We investigated the effect of inhibition of JNK on different forms of synaptic plasticity in the dentate gyrus of freely behaving adult rats. Intracereboventricular application of c‐Jun N‐terminal protein kinase‐inhibiting peptide (D‐JNKI) (96 ng), a highly selective JNK inhibitor peptide, did not affect basal synaptic transmission but reduced neuronal excitability with a higher dose (192 ng). Application of D‐JNKI, at a concentration that did not affect basal synaptic transmission, resulted in reduced specific phosphorylation of the JNK substrates postsynaptic density 95kD protein (PSD 95) and c‐Jun, a significant enhancement of LTD and a facilitation of short‐term depression into LTD. Both LTP and short‐term potentiation were unaffected. An inhibition of depotentiation (recovery of LTP) occurred. These data suggest that suppression of JNK‐dependent signalling may serve to enhance synaptic depression, and indirectly promote LTP through impairment of depotentiation.  相似文献   

2.
Although the effects of long‐term experimental dysthyroidism on long‐term potentiation (LTP) and long‐term depression (LTD) have been documented, the relationship between LTP/LTD and acute administration of L‐thyroxine (T4) has not been described. Here, we investigated the effects of intra‐hippocampal administration of T4 on synaptic plasticity in the dentate gyrus of the hippocampal formation. After a 15‐minute baseline recording, LTP and LTD were induced by application of high‐ and low‐frequency stimulation protocols, respectively. Infusions of saline or T4 and tetraiodothyroacetic acid (tetrac), a T4 analog that inhibits binding of iodothyronines to the integrin αvβ3 receptor, either alone or together, were made during the stimulation protocols. The averages of the excitatory postsynaptic potential (EPSP) slopes and population spike (PS) amplitudes, between 55 to 60 minutes, were used as a measure of the LTP/LTD magnitude and were analyzed by two‐way univariate ANOVA with T4 and tetrac as between‐subjects factors. The input–output curves of the infusion groups were comparable to each other, as shown by the non significant interaction observed between stimulus intensity and infused drug. The magnitude of the LTP in T4‐infused rats was significantly lower as compared to saline‐infused rats. Both the PS amplitude and the EPSP slope were depressed more markedly with T4 infusion than with saline, tetrac, and T4 + tetrac infusion. Data of this study provide in vivo evidence that T4 can promote LTD over LTP via the integrin αvβ3 receptor, and that the effect of endogenous T4 on this receptor can be suppressed by tetrac in the hippocampus. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Electrophysiological recordings were used to investigate the role of the local synthesis of 17β‐estradiol (E2) and 5α‐dihydrotestosterone (DHT) on synaptic long‐term effects induced in the hippocampal CA1 region of male rat slices. Long‐term depression (LTD) and long‐term potentiation (LTP), induced by different stimulation patterns, were examined under the block of the DHT synthesis by finasteride (FIN), and the E2 synthesis by letrozole (LET). We used low frequency stimulation (LFS) for LTD, high frequency stimulation (HFS) for LTP, and intermediate patterns differing in duration or frequency. We found that FIN reverted the LFS‐LTD into LTP and enhanced LTP induced by intermediate and HFSs. These effects were abolished by exogenous DHT at concentration higher than the basal one, suggesting a stimulus dependent increase in DHT availability. No effect on the synaptic responses was observed giving DHT alone. Moreover, we found that the inhibition of E2 synthesis influenced the HFS‐LTP by reducing its amplitude, and the exogenous E2 either enhanced HFS‐LTP or reverted the LFS‐LTD into LTP. The equivalence of the E2 concentration for rescuing the full HFS‐LTP under LET and reverting the LFS‐LTD into LTP suggests an enhancement of the endogenous E2 availability that is specifically driven by the HFS. No effect of FIN or LET was observed on the responses to stimuli that did not induce either LTD or LTP. This study provides evidence that the E2 and DHT availability combined with specific stimulation patterns is determinant for the sign and amplitude of the long‐term effects.  相似文献   

4.
Addictive drugs modulate synaptic transmission in the meso‐corticolimbic system by hijacking normal adaptive forms of experience‐dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long‐term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA‐ergic systems in the shell‐NAc modulates METH‐induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline‐treated animals. Intra‐NAc infusion of muscimol (GABA receptor agonist) decreased METH‐induced enhancement of dentate gyrus (DG)‐LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH‐induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH‐induced hippocampal LTP through a hippocampus‐NAc‐VTA circuit loop. Synapse 70:325–335, 2016 . © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Hippocampal synaptic plasticity, in the form of long‐term potentiation (LTP) and long‐term depression (LTD), enables spatial memory formation, whereby LTP and LTD are likely to contribute different elements to the resulting spatial representation. Dopamine, released from the ventral tegmental area particularly under conditions of reward, acts on the hippocampus, and may specifically influence the encoding of information into long‐term memory. The dentate gyrus (DG), as the “gateway” to the hippocampus is likely to play an important role in this process. D1/D5 dopamine receptors are importantly involved in the regulation of synaptic plasticity thresholds in the CA1 region of the hippocampus and determine the direction of change in synaptic strength that occurs during novel spatial learning. Here, we explored whether D1/D5‐receptors influence LTD that is induced in the DG following patterned afferent stimulation of the perforant path of freely behaving adult rats, or influence LTD that occurs in association with spatial learning. We found that LTD that is induced by afferent stimulation, and LTD that is facilitated by learning about novel landmark configurations, were both prevented by D1/D5‐receptor antagonism, whereas agonist activation of the D1/D5‐receptor had no effect on basal tonus or short‐term depression. Other studies have reported that in the DG, D1/D5‐receptor agonism or antagonism do not affect LTP, but agonism prevents depotentiation. These findings suggest that the dopaminergic system, acting via D1/D5‐receptors, influences information gating by the DG and modulates the direction of change in synaptic strength that underlies information storage in this hippocampal substructure. Information encoded by robust forms of LTD is especially dependent on D1/D5‐receptor activation. Thus, dopamine acting on D1/D5‐receptors is likely to support specific experience‐dependent encoding, and may influence the content of hippocampal representations of experience. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

6.
The technique of deep brain stimulation (DBS) has become a preferred surgical choice for the treatment of advanced Parkinson's disease. The subthalamic nucleus (STN) is presently the most promising target for such DBS. In this study, whole-cell patch-clamp recordings were made from 46 STN neurons in rat brain slices to examine the effect of high-frequency stimulation (HFS) of the STN on glutamatergic synaptic transmission in STN neurons. HFS, consisting of trains of stimuli at a frequency of 100 Hz for 1 min, produced three types of synaptic plasticity in 17 STN neurons. First, HFS of the STN induced short-term potentiation (STP) of evoked postsynaptic current (EPSC) amplitude in four neurons. STP was associated with a reduction in the EPSC paired-pulse ratio, suggesting a presynaptic site of action. Second, HFS of the STN generated long-term potentiation (LTP) of EPSC amplitude in eight neurons. Although the EPSC paired-pulse ratio was reduced transiently in the first 2 min following HFS, ratios measured 6-20 min after HFS were unchanged from control. This suggests that LTP is maintained by a postsynaptic mechanism. Third, HFS produced long-term depression (LTD) of EPSC amplitude in five STN neurons. LTD was associated with a significant increase in EPSC paired-pulse ratios, indicating a presynaptic site of action. These results suggest that HFS can produce long-term changes in the efficacy of synaptic transmission in the STN. HFS-induced synaptic plasticity might be one mechanism underlying the effectiveness of DBS in the STN as a treatment of advanced Parkinson's disease.  相似文献   

7.
Changes in synaptic efficacy and morphology are considered as the downstream mechanisms of consolidation of memories and other adaptive behaviors. In the last decade, neurotrophin‐3 (NT‐3) has emerged as one potent mediator of synaptic plasticity. In the adult brain, expression of NT‐3 is largely confined to the hippocampal dentate gyrus (DG). Our previous studies show that application of high‐frequency stimulation (HFS) sufficient to elicit long‐term potentiation (LTP) at the DG‐CA3 pathway as well as acute intrahippocampal microinfusion of brain‐derived neurotrophin factor produce mossy fiber (MF) structural reorganization. Here, we show that intrahippocampal microinfusion of NT‐3 induces a long‐lasting potentiation of synaptic efficacy in the DG‐CA3 projection accompanied by an MF structural reorganization of adult rats in vivo. It is considered that the capacity of synapses to express plastic changes is itself subject to variation depending on previous experience; taking into consideration the effects of NT‐3 on MF synaptic plasticity, we thus used intrahippocampal microinfusion of NT‐3 to analyse its effects on functional and structural plasticity induced by subsequent MF‐HFS sufficient to induce LTP in adult rats, in vivo. Our results show that NT‐3 modifies the ability of the MF pathway to present subsequent LTP by HFS, and modifies the structural reorganization pattern. The modifications in synaptic efficacy and morphology elicited by NT‐3 at the MF‐CA3 pathway were blocked by the presence of a Trk receptor inhibitor (K252a). These findings support the idea that NT‐3 actions modify subsequent synaptic plasticity, a homeostatic mechanism thought to be essential for maintaining synapses in the adult mammalian brain.  相似文献   

8.
Heterosynaptic long‐term depression (hLTD) at untetanized synapses accompanying the induction of long‐term potentiation (LTP) spatially sharpens the activity‐induced synaptic potentiation; however, the underlying mechanism remains unclear. We found that hLTD in the hippocampal CA1 region is caused by stimulation‐induced ATP release from astrocytes that suppresses transmitter release from untetanized synaptic terminals via activation of P2Y receptors. Selective stimulation of astrocytes expressing channelrhodopsin‐2, a light‐gated cation channel permeable to Ca2+, resulted in LTD of synapses on neighboring neurons. This synaptic modification required Ca2+ elevation in astrocytes and activation of P2Y receptors, but not N‐methyl‐D ‐aspartate receptors. Furthermore, blocking P2Y receptors or buffering astrocyte intracellular Ca2+ at a low level prevented hLTD without affecting LTP induced by SC stimulation. Thus, astrocyte activation is both necessary and sufficient for mediating hLTD accompanying LTP induction, strongly supporting the notion that astrocytes actively participate in activity‐dependent synaptic plasticity of neural circuits. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Thyroid hormone deficiency during a critical period of development profoundly affects cognitive functions such as attention, learning, and memory, but the synaptic alterations underlying these deficits remain unexplored. The present study examines the effect of congenital hypothyroidism on long-term synaptic plasticity. This plasticity is believed to be essential for learning and memory and for activity-dependent regulation of synapse formation in the developing brain. We found that the neonatal expression of long-term potentiation (LTP), long-term depression (LTD), depotentiation, and de-depression in hippocampal slices from hypothyroid animals was similar to that of controls. To examine the postnatal development of these plasticities, we used slices from neonatal (2-3 weeks) and adult (7-8 weeks) rats. This work demonstrates that the ability to express all these forms of synaptic plasticity is reduced in an age-dependent manner in control rats. LTP and depotentiation are also downregulated in adult hypothyroid rats, but we have found that de-depression is not affected during maturation. In addition, these animals express LTD at ages at which controls fail to induce it. In contrast, input/output experiments have shown greater levels of basal synaptic efficacy in hypothyroid adults, and this effect is probably related to the higher probability of release observed by paired-pulse experiments. Nevertheless, these effects appear to be unrelated to the differences observed in long-term synaptic plasticity, as no correlation was found between basal synaptic efficacy and the degree of LTD and de-depression. Furthermore, the NMDA-receptor antagonist amino-phosphonopentanoic acid (APV) completely blocked LTD, which suggests a postsynaptic locus of this alteration. Because LTD has been associated with novelty acquisition, we suggest that the greater LTD observed in adult hypothyroid rats might be related to the hyperactivity of these animals. However, other possibilities such as a retarded maturation of synaptic plasticity must be taken into account.  相似文献   

10.
11.
A small fraction of children with febrile seizures appears to develop cognitive impairments. Recent studies in a rat model of hyperthermia‐induced febrile seizures indicate that prolonged febrile seizures early in life have long‐lasting effects on the hippocampus and induce cognitive deficits. However, data on network plasticity and the nature of cognitive deficits are conflicting. We examined three specific measures of hippocampal plasticity in adult rats with a prior history of experimental febrile seizures: (i) activity‐dependent synaptic plasticity (long‐term potentiation and depression) by electrophysiological recordings of Schaffer collateral/commissural‐evoked field excitatory synaptic potentials in CA1 of acute hippocampal slices; (ii) Morris water maze spatial learning and memory; and (iii) hippocampal mossy fiber plasticity by Timm histochemistry and quantification of terminal sprouting in CA3 and the dentate gyrus. We found enhanced hippocampal CA1 long‐term potentiation and reduced long‐term depression but normal spatial learning and memory in adult rats that were subjected to experimental febrile seizures on postnatal day 10. Furthermore, rats with experimental febrile seizures showed modest but significant sprouting of mossy fiber collaterals into the inner molecular layer of the dentate gyrus in adulthood. We conclude that enhanced CA1 long‐term potentiation and mild mossy fiber sprouting occur after experimental febrile seizures, without affecting spatial learning and memory in the Morris water maze. These long‐term functional and structural alterations in hippocampal plasticity are likely to play a role in the enhanced seizure susceptibility in this model of prolonged human febrile seizures but do not correlate with overt cognitive deficits.  相似文献   

12.
Hippocampal synaptic plasticity in the form of long‐term potentiation (LTP) and long‐term depression (LTD) is likely to enable synaptic information storage in support of memory formation. The mouse brain has been subjected to intensive scrutiny in this regard; however, a multitude of studies has examined synaptic plasticity in the hippocampal slice preparation, whereas very few have addressed synaptic plasticity in the freely behaving mouse. Almost nothing is known about the frequency or N‐methyl‐D‐aspartate receptor (NMDAR) dependency of hippocampal synaptic plasticity in the intact mouse brain. Therefore, in this study, we investigated the forms of synaptic plasticity that are elicited at different afferent stimulation frequencies. We also addressed the NMDAR dependency of this phenomenon. Adult male C57BL/6 mice were chronically implanted with a stimulating electrode into the Schaffer collaterals and a recording electrode into the Stratum radiatum of the CA1 region. To examine synaptic plasticity, we chose protocols that were previously shown to produce either LTP or LTD in the hippocampal slice preparation. Low‐frequency stimulation (LFS) at 1 Hz (900 pulses) had no effect on evoked responses. LFS at 3 Hz (ranging from 200 up to 2 × 900 pulses) elicited short‐term depression (STD, <45 min). LFS at 3 Hz (1,200 pulses) elicited slow‐onset potentiation, high‐frequency stimulation (HFS) at 100 Hz (100 or 200 pulses) or at 50 Hz was ineffective, whereas 100 Hz (50 pulses) elicited short‐term potentiation (STP). HFS at 100 Hz given as 2 × 30, 2 × 50, or 4 × 50 pulses elicited LTP (>24 h). Theta‐burst stimulation was ineffective. Antagonism of the NMDAR prevented STD, STP, and LTP. This study shows for the first time that protocols that effectively elicit persistent synaptic plasticity in the slice preparation elicit distinctly different effects in the intact mouse brain. Persistent LTD could not be elicited with any of the protocols tested. Plasticity responses are NMDAR dependent, suggesting that these phenomena are relevant for hippocampus‐dependent learning. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Yang J  Han H  Cao J  Li L  Xu L 《Hippocampus》2006,16(5):431-436
Clinical studies demonstrate that prenatal stress causes cognitive deficits and increases vulnerability to affective disorders in children and adolescents. The underlying mechanisms are not yet fully understood. Here, we reported that prenatal stress (10 unpredictable, 1 s, 0.8 mA foot shocks per day during gestational days 13-19) impaired long-term potentiation (LTP) but facilitated long-term depression (LTD) in hippocampal CA1 region in slices of the prenatal stressed offspring (5 weeks old). Cross-fostering neonate offspring by the prenatal stressed or control mothers did not change the effects of prenatal stress on the hippocampal LTP and LTD. Furthermore, prenatal stress enhanced the effects of acute stress on the hippocampal LTP and LTD and impaired spatial learning and memory in the Morris water maze in the young rat offspring. Therefore, prenatal stress alters synaptic plasticity and enhances the effects of acute stress on synaptic plasticity in the hippocampus, which may be the mechanism for the impaired spatial learning and memory in young rat offspring.  相似文献   

14.
Aims: To evaluate the acute effects of the mitochondrial complex I inhibitor rotenone on rat hippocampal synaptic plasticity. Methods: Electrophysiological field potential recordings were used to measure basal synaptic transmission and synaptic plasticity in rat coronal hippocampal slices. Synaptic long‐term potentiation (LTP) was induced by high‐frequency stimulation (100 Hz, 1 second × 3 at an interval of 20 seconds). In addition, mitochondrial complex I function was measured using MitoSOX imaging in mitochondrial preparations. Results: Acute exposure of hippocampal slices to 50 nM rotenone for 1 h did not alter basal CA3–CA1 synaptic transmission though 500 nM rotenone significantly reduced basal synaptic transmission. However, 50 nM rotenone significantly impaired LTP and this rotenone's effect was prevented by co‐application of rotenone plus the ketones acetoacetate and β‐hydroxybutyrate (1 mM each). Finally, we measured mitochondrial function using MitoSOX imaging in mitochondrial preparations and found that 50 nM rotenone partially reduced mitochondrial function whereas 500 nM rotenone completely eliminated mitochondrial function. Conclusions: Our findings suggest that mitochondrial activity driven by complex I is a sensitive modulator of synaptic plasticity in the hippocampus. Acute exposure of the hippocampus to rotenone eliminates complex I function and in turn impairs LTP.  相似文献   

15.
Brain‐derived neurotrophic factor (BDNF) supports neuronal survival, growth, and differentiation and has been implicated in forms of hippocampus‐dependent learning. In vitro, a specific role in hippocampal synaptic plasticity has been described, although not all experience‐dependent forms of synaptic plasticity critically depend on BDNF. Synaptic plasticity is likely to enable long‐term synaptic information storage and memory, and the induction of persistent (>24 h) forms, such as long‐term potentiation (LTP) and long‐term depression (LTD) is tightly associated with learning specific aspects of a spatial representation. Whether BDNF is required for persistent (>24 h) forms of LTP and LTD, and how it contributes to synaptic plasticity in the freely behaving rodent has never been explored. We examined LTP, LTD, and related forms of learning in the CA1 region of freely dependent mice that have a partial knockdown of BDNF (BDNF+/?). We show that whereas early‐LTD (<90min) requires BDNF, short‐term depression (<45 min) does not. Furthermore, BDNF is required for LTP that is induced by mild, but not strong short afferent stimulation protocols. Object‐place learning triggers LTD in the CA1 region of mice. We observed that object‐place memory was impaired and the object‐place exploration failed to induce LTD in BDNF+/? mice. Furthermore, spatial reference memory, that is believed to be enabled by LTP, was also impaired. Taken together, these data indicate that BDNF is required for specific, but not all, forms of hippocampal‐dependent information storage and memory. Thus, very robust forms of synaptic plasticity may circumvent the need for BDNF, rather it may play a specific role in the optimization of weaker forms of plasticity. The finding that both learning‐facilitated LTD and spatial reference memory are both impaired in BDNF+/? mice, suggests moreover, that it is critically required for the physiological encoding of hippocampus‐dependent memory. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

16.
We recently have found that an acute application of the neurosteroid pregnenolone sulfate (PREGS) at 50 μM to rat hippocampal slices induces a long‐lasting potentiation (LLPPREGS) via a sustained ERK2/CREB activation at perforant‐path/granule‐cell synapses in the dentate gyrus. This study is a follow up to investigate whether the expression of LLPPREGS influences subsequent frequency‐dependent synaptic plasticity. Conditioning electric stimuli (CS) at 0.1–200 Hz were given to the perforant‐path of rat hippocampal slices expressing LLPPREGS to induce long‐term potentiation (LTP) and long‐term depression (LTD). The largest LTP was induced at about 20 Hz‐CS, which is normally a subthreshold frequency, and the largest LTD at 0.5 Hz‐CS, resulting in a leftward‐shift of the LTP/LTD‐frequency curve. Furthermore, the level of LTP at 100 Hz‐CS was significantly attenuated to give band‐pass filter characteristics of LTP induction with a center frequency of about 20 Hz. The LTP induced by 20 Hz‐CS (termed 20 Hz‐LTP) was found to be postsynaptic origin and dependent on L‐type voltage‐gated calcium channel (L‐VGCC) but not on N‐methyl‐D ‐aspartate receptor (NMDAr). Moreover, the induction of 20 Hz‐LTP required a sustained activation of ERK2 that had been triggered by PREGS. In conclusion, the transient elevation of PREGS is suggested to induce a modulatory metaplasticity through a sustained activation of ERK2 in an L‐VGCC dependent manner. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Changes in synaptic efficacy and morphology have been proposed as mechanisms underlying learning and memory processes. In our previous studies, high frequency stimulation (HFS) sufficient to induce LTP at the hippocampal mossy fiber (MF) pathway, leads to MF synaptogenesis, in a prominent contralateral form, at the stratum oriens of hippocampal CA3 area. Recently we reported that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy at the MF projection accompanied by a structural reorganization at the CA3 area within the stratum oriens region in a prominent ipsilateral form. It is considered that the capacity of synapses to express plastic changes is itself subject to variation dependent on previous experience. Here we used intrahippocampal microinfusion of BDNF to analyze its effects on functional and structural synaptic plasticity induced by subsequent mossy fiber HFS sufficient to induce LTP in adult rats, in vivo. Our results show that BDNF modifies the ability of the MF pathway to present LTP by HFS. Moreover BDNF modified the structural reorganization pattern produced by HFS, presenting a balanced bilateral appearance. Microinfusion of K252a blocks the functional and morphological effects produced by BDNF, revealing that the BDNF modulation is dependent on its TrkB receptor activation. These findings support the idea that BDNF actions modify subsequent synaptic plasticity; a homeostatic mechanism thought to be essential for synaptic integration among prolonged temporal domains in the adult mammalian brain. © 2010 Wiley Periodicals, Inc., Inc.  相似文献   

18.
Learning‐facilitated synaptic plasticity describes the ability of hippocampal synapses to respond with persistent plasticity to afferent stimulation when coupled with a spatial learning event, whereby the afferent stimulation normally produces short‐term plasticity or no change in synaptic strength if given in the absence of novel learning. Recently, it was reported that in the mouse hippocampus intrinsic long‐term depression (LTD > 24 h) occurs when test‐pulse afferent stimulation is coupled with a novel spatial learning. It is not known to what extent this phenomenon shares molecular properties with synaptic plasticity that is typically induced by means of patterned electrical afferent stimulation. In previous work, we showed that a novel spatial object recognition task facilitates LTD at the Schaffer collateral—CA1 synapse of freely behaving adult mice, whereas reexposure to the familiar spatial configuration ~24 h later elicited no such facilitation. Here we report that treatment with the NMDA receptor antagonist, (±)‐3‐(2‐Carboxypiperazin‐4‐yl)‐propanephosphonic acid (CPP), or antagonism of metabotropic glutamate (mGlu) receptor, mGlu5, using 2‐methyl‐6‐(phenylethynyl) pyridine (MPEP), completely prevented LTD under the novel learning conditions. Behavioral assessment during re‐exposure after application of the antagonists revealed that the animals did not remember the object during novel exposure and treated them as if they were novel. Under these circumstances, where the acquisition of novel spatial information was involved, LTD was facilitated. Our data support that the endogenous LTD that is enabled through novel spatial learning in adult mice is critically dependent on the activation of both the NMDA receptors and mGlu5. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Recently it has emerged that hippocampal long-term depression (LTD) may play an important role in the acquisition and storage of spatial memories. This form of synaptic plasticity is tightly regulated by metabotropic glutamate receptors (mGluRs) that negatively couple to adenylyl cyclase. Activation of group III mGluRs is necessary for persistent hippocampal LTD, but is not required for depotentiation or long-term potentiation (LTP) in the dentate gyrus in vivo. In the CA1 region antagonism of group III mGluRs prevents LTD in vivo. Effects on LTP in vivo are as yet unknown. We investigated the effects of group III mGluR antagonism on LTP and LTD at Schaffer collateral-CA1 synapses, and on spatial learning in the eight-arm radial maze. Daily application of the group III mGluR antagonist (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) resulted in impairment of long-term (reference) memory, with effects becoming apparent 4 days after training and drug treatment began. Short-term (working) memory was unaffected throughout the 10-day study. Application of CPPG prevented LTD, but not LTP, in the CA1 region. These data suggest that activation of group III mGluRs is required for the establishment of spatial long-term memory. Their exclusive role in mediating hippocampal LTD provides correlational evidence for a role for LTD in the type of spatial learning studied.  相似文献   

20.
Amyloid β‐protein (Aβ) is thought to be responsible for the deficit of learning and memory in Alzheimer's disease (AD), possibly through interfering with synaptic plasticity in the brain. It has been reported that Aβ fragments suppress the long‐term potentiation (LTP) of synaptic transmission. However, it is unclear whether Aβ fragments can regulate long‐term depression (LTD), an equally important form of synaptic plasticity in the brain. The present study investigates the effects of Aβ fragments on LTD induced by low frequency stimulation (LFS) in the hippocampus in vivo. Our results showed that (1) prolonged 1–10 Hz of LFS all effectively elicited LTD, which could persist for at least 2 h and be reversed by high frequency stimulation (HFS); (2) the effectiveness of LTD induction depended mainly on the number of pulses but not the frequency of LFS; (3) pretreatment with Aβ fragment 25–35 (Aβ25–35, 12.5 and 25 nmol) did not change baseline field excitatory postsynaptic potentials but dose‐dependently potentiated LTD; (4) Aβ fragment 31–35 (Aβ31–35), a shorter Aβ fragment than Aβ25–35, also dose‐dependently strengthened LFS‐induced hippocampal LTD. Thus, the present study demonstrates the enhancement of hippocampal LTD by Aβ in in vivo condition. We propose that Aβ‐induced potentiation of LTD, together with the suppression of LTP, will result in the impairment of cognitive function of the brain. Synapse 63:206–214, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号