首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
Organic–inorganic halide perovskites are promising photodetector materials due to their strong absorption, large carrier mobility, and easily tunable bandgap. Up to now, perovskite photodetectors are mainly based on polycrystalline thin films, which have some undesired properties such as large defective grain boundaries hindering the further improvement of the detector performance. Here, perovskite thin‐single‐crystal (TSC) photodetectors are fabricated with a vertical p–i–n structure. Due to the absence of grain‐boundaries, the trap densities of TSCs are 10–100 folds lower than that of polycrystalline thin films. The photodetectors based on CH3NH3PbBr3 and CH3NH3PbI3 TSCs show low noise of 1–2 fA Hz?1/2, yielding a high specific detectivity of 1.5 × 1013 cm Hz1/2 W?1. The absence of grain boundaries reduces charge recombination and enables a linear response under strong light, superior to polycrystalline photodetectors. The CH3NH3PbBr3 photodetectors show a linear response to green light from 0.35 pW cm?2 to 2.1 W cm?2, corresponding to a linear dynamic range of 256 dB.  相似文献   

2.
Organolead trihalide perovskites have drawn substantial interest for photovoltaic and optoelectronic applications due to their remarkable physical properties and low processing cost. However, perovskite thin films suffer from low carrier mobility as a result of their structural imperfections such as grain boundaries and pinholes, limiting their device performance and application potential. Here we demonstrate a simple and straightforward synthetic strategy based on coupling perovskite films with embedded single‐walled carbon nanotubes. We are able to significantly enhance the hole and electron mobilities of the perovskite film to record‐high values of 595.3 and 108.7 cm2 V?1 s?1, respectively. Such a synergistic effect can be harnessed to construct ambipolar phototransistors with an ultrahigh detectivity of 3.7 × 1014 Jones and a responsivity of 1 × 104 A W?1, on a par with the best devices available to date. The perovskite/carbon nanotube hybrids should provide a platform that is highly desirable for fields as diverse as optoelectronics, solar energy conversion, and molecular sensing.  相似文献   

3.
Organometal trihalide perovskites have been attracting intense attention due to their enthralling optoelectric characteristics. Thus far, most applications focus on polycrystalline perovskite, which however, is overshadowed by single crystal perovskite with superior properties such as low trap density, high mobility, and long carrier diffusion length. In spite of the inherent advantages and significant optoelectronic applications in solar cells and photodetectors, the fabrication of large‐area laminar perovskite single crystals is challenging. In this report, an ingenious space‐limited inverse temperature crystallization method is first demonstrated to the in situ synthesis of 120 cm2 large‐area CH3NH3PbBr3 crystal film on fluorine‐doped tin oxide (FTO) glass. Such CH3NH3PbBr3 perovskite crystal film is successfully applied to narrowband photodetectors, which enables a broad linear response range of 10?4–102 mW cm?2, 3 dB cutoff frequency (f 3 dB) of ≈110 kHz, and high narrow response under low bias ?1 V.  相似文献   

4.
Metal halide perovskites represent a family of the most promising materials for fascinating photovoltaic and photodetector applications due to their unique optoelectronic properties and much needed simple and low‐cost fabrication process. The high atomic number (Z) of their constituents and significantly higher carrier mobility also make perovskite semiconductors suitable for the detection of ionizing radiation. By taking advantage of that, the direct detection of soft‐X‐ray‐induced photocurrent is demonstrated in both rigid and flexible detectors based on all‐inorganic halide perovskite quantum dots (QDs) synthesized via a solution process. Utilizing a synchrotron soft‐X‐ray beamline, high sensitivities of up to 1450 µC Gyair?1 cm?2 are achieved under an X‐ray dose rate of 0.0172 mGyair s?1 with only 0.1 V bias voltage, which is about 70‐fold more sensitive than conventional α‐Se devices. Furthermore, the perovskite film is printed homogeneously on various substrates by the inexpensive inkjet printing method to demonstrate large‐scale fabrication of arrays of multichannel detectors. These results suggest that the perovskite QDs are ideal candidates for the detection of soft X‐rays and for large‐area flat or flexible panels with tremendous application potential in multidimensional and different architectures imaging technologies.  相似文献   

5.
Organolead trihalide perovskites have attracted significant attention for optoelectronic applications due to their excellent physical properties in the past decade. Generally, both grain boundaries in perovskite films and the device structure play key roles in determining the device performance, especially for horizontal‐structured device. Here, the first optimized vertical‐structured photodetector with the perovskite single crystal MAPbBr3 as the light absorber and graphene as the transport layer is shown. The hybrid device combines strong photoabsorption characteristics of perovskite and high carrier mobility of flexible graphene, exhibits excellent photoresponse performance with high photoresponsivity (≈1017.1 A W?1) and high photodetectivity (≈2.02 × 1013 Jones) in a low light intensity (0.66 mW cm?2) under the actuations of 3 V bias and laser irradiation at 532 nm. In particular, an ultrahigh photoconductive gain of ≈2.37 × 103 is attained because of fast charge transfer in the graphene and large recombination lifetime in the perovskite single crystal. The vertical architecture combining perovskite crystal with highly conductive graphene offers opportunities to fulfill the synergistic effect of perovskite and 2D materials, is thus promising for developing high‐performance electronic and optoelectronic devices.  相似文献   

6.
By fine‐tuning the crystal nucleation and growth process, a low‐temperature‐gradient crystallization method is developed to fabricate high‐quality perovskite CH3NH3PbBr3 single crystals with high carrier mobility of 81 ± 5 cm2 V?1 s?1 (>3 times larger than their thin film counterpart), long carrier lifetime of 899 ± 127 ns (>5 times larger than their thin film counterpart), and ultralow trap state density of 6.2 ± 2.7 × 109 cm?3 (even four orders of magnitude lower than that of single‐crystalline silicon wafers). In fact, they are better than perovskite single crystals reported in prior work: their application in photosensors gives superior detectivity as high as 6 × 1013 Jones, ≈10–100 times better than commercial sensors made of silicon and InGaAs. Meanwhile, the response speed is as fast as 40 µs, ≈3 orders of magnitude faster than their thin film devices. A large‐area (≈1300 mm2) imaging assembly composed of a 729‐pixel sensor array is further designed and constructed, showing excellent imaging capability thanks to its superior quality and uniformity. This opens a new possibility to use the high‐quality perovskite single‐crystal‐based devices for more advanced imaging sensors.  相似文献   

7.
Developing environmentally friendly perovskites has become important in solving the toxicity issue of lead‐based perovskite solar cells. Here, the first double perovskite (Cs2AgBiBr6) solar cells using the planar structure are demonstrated. The prepared Cs2AgBiBr6 films are composed of high‐crystal‐quality grains with diameters equal to the film thickness, thus minimizing the grain boundary length and the carrier recombination. These high‐quality double perovskite films show long electron–hole diffusion lengths greater than 100 nm, enabling the fabrication of planar structure double perovskite solar cells. The resulting solar cells based on planar TiO2 exhibit an average power conversion efficiency over 1%. This work represents an important step forward toward the realization of environmentally friendly solar cells and also has important implications for the applications of double perovskites in other optoelectronic devices.  相似文献   

8.
Low trap‐state density, high carrier mobility, and efficient charge carrier collection are key parameters for photodetectors with high sensitivity and fast response time. This study demonstrates a simple solution growth method to prepare CsPbBr3 microcrystals (MCs) with low trap‐state density. Time‐dependent photoluminescence study with one‐photon excitation (OPE) and two‐photon excitation (TPE) indicates that CsPbBr3 MCs exhibit fast carrier diffusion with carrier mobility over 100 cm2 V?1 S?1. Furthermore, CsPbBr3 MC‐based photodetectors with high charge carriers' collection efficiency are fabricated. Such photodetectors show ultrahigh responsivity (R ) up to 6 × 104 A W?1 with OPE and high R up to 6 A W?1 with TPE. The R for OPE is over one order of magnitude higher (the R for TPE is three orders of magnitude higher) than that of previously reported all‐inorganic perovskite‐based photodetectors. Moreover, the photodetectors exhibit fast response time of ≈1 ms, which corresponds to a gain ≈105 and a gain‐ bandwidth product of 108 Hz for OPE (a gain ≈103 and a gain‐bandwidth product of 106 Hz for TPE).  相似文献   

9.
This paper reports a facile and scalable process to achieve high performance red perovskite light‐emitting diodes (LEDs) by introducing inorganic Cs into multiple quantum well (MQW) perovskites. The MQW structure facilitates the formation of cubic CsPbI3 perovskites at low temperature, enabling the Cs‐based QWs to provide pure and stable red electroluminescence. The versatile synthesis of MQW perovskites provides freedom to control the crystallinity and morphology of the emission layer. It is demonstrated that the inclusion of chloride can further improve the crystallization and consequently the optical properties of the Cs‐based MQW perovskites, inducing a low turn‐on voltage of 2.0 V, a maximum external quantum efficiency of 3.7%, a luminance of ≈440 cd m?2 at 4.0 V. These results suggest that the Cs‐based MQW LED is among the best performing red perovskite LEDs. Moreover, the LED device demonstrates a record lifetime of over 5 h under a constant current density of 10 mA cm?2. This work suggests that the MQW perovskites is a promising platform for achieving high performance visible‐range electroluminescence emission through high‐throughput processing methods, which is attractive for low‐cost lighting and display applications.  相似文献   

10.
All‐inorganic perovskite solar cells have developed rapidly in the last two years due to their excellent thermal and light stability. However, low efficiency and moisture instability limit their future commercial application. The mixed‐halide inorganic CsPbI2Br perovskite with a suitable bandgap offers a good balance between phase stability and light harvesting. However, high defect density and low carrier lifetime in CsPbI2Br perovskites limit the open‐circuit voltage (Voc < 1.2 V), short‐circuit current density (Jsc < 15 mA cm?2), and fill factor (FF < 75%) of CsPbI2Br perovskite solar cells, resulting in an efficiency below 14%. For the first time, a CsPbI2Br perovskite is doped by Eu(Ac)3 to obtain a high‐quality inorganic perovskite film with a low defect density and long carrier lifetime. A high efficiency of 15.25% (average efficiency of 14.88%), a respectable Voc of 1.25 V, a reasonable Jsc of 15.44 mA cm?2, and a high FF of 79.00% are realized for CsPbI2Br solar cells. Moreover, the CsPbI2Br solar cells with Eu(Ac)3 doping demonstrate excellent air stability and maintain more than 80% of their initial power conversion efficiency (PCE) values after aging in air (relative humidity: 35–40%) for 30 days.  相似文献   

11.
Organic–inorganic hybrid perovskites (OIHPs) are new photoactive layer candidates for lightweight and flexible solar cells due to their low‐temperature process capability; however, the reported efficiency of flexible OIHP devices is far behind those achieved on rigid glass substrates. Here, it is revealed that the limiting factor is the different perovskite film deposition conditions required to form the same film morphology on flexible substrates. An optimized perovskite film composition needs a different precursor ratio, which is found to be essential for the formation of high‐quality perovskite films with longer radiative carrier recombination lifetime, smaller density of trap states, reduced precursor residue, and uniform and pin‐hole free films. A record efficiency of 18.1% is achieved for the flexible perovskite solar‐cell devices made on an indium tin oxide/poly(ethylene terephthalate) substrate via a low temperature (≤100 °C) solution process.  相似文献   

12.
All‐inorganic perovskites have high carrier mobility, long carrier diffusion length, excellent visible light absorption, and well overlapping with localized surface plasmon resonance (LSPR) of noble metal nanocrystals (NCs). The high‐performance photodetectors can be constructed by means of the intrinsic outstanding photoelectric properties, especially plasma coupling. Here, for the first time, inorganic perovskite photodetectors are demonstrated with synergetic effect of preferred‐orientation film and plasmonic with both high performance and solution process virtues, evidenced by 238% plasmonic enhancement factor and 106 on/off ratio. The CsPbBr3 and Au NC inks are assembled into high‐quality films by centrifugal‐casting and spin‐coating, respectively, which lead to the low cost and solution‐processed photodetectors. The remarkable near‐field enhancement effect induced by the coupling between Au LSPR and CsPbBr3 photogenerated carriers is revealed by finite‐difference time‐domain simulations. The photodetector exhibits a light on/off ratio of more than 106 under 532 nm laser illumination of 4.65 mW cm?2. The photocurrent increases from 0.67 to 2.77 μA with centrifugal‐casting. Moreover, the photocurrent rises from 245.6 to 831.1 μA with Au NCs plasma enhancement, leading to an enhancement factor of 238%, which is the most optimal report among the LSPR‐enhanced photodetectors, to the best of our knowledge. The results of this study suggest that all‐inorganic perovskites are promising semiconductors for high‐performance solution‐processed photodetectors, which can be further enhanced by Au plasmonic effect, and hence have huge potentials in optical communication, safety monitoring, and biological sensing.  相似文献   

13.
Photodetectors are critical parts of an optical communication system for achieving efficient photoelectronic conversion of signals, and the response speed directly determines the bandwidth of the whole system. Metal halide perovskites, an emerging class of low‐cost solution‐processed semiconductors, exhibiting strong optical absorption, low trap states, and high carrier mobility, are widely investigated in photodetection applications. Herein, through optimizing the device engineering and film quality, high‐performance photodetectors based on all‐inorganic cesium lead halide perovskite (CsPbIxBr3–x), which simultaneously possess high sensitivity and fast response, are demonstrated. The optimized devices processed from CsPbIBr2 perovskite show a practically measured detectable limit of about 21.5 pW cm?2 and a fast response time of 20 ns, which are both among the highest reported device performance of perovskite‐based photodetectors. Moreover, the photodetectors exhibit outstanding long‐term environmental stability, with negligible degradation of the photoresponse property after 2000 h under ambient conditions. In addition, the resulting perovskite photodetector is successfully integrated into an optical communication system and its applications as an optical signal receiver on transmitting text and audio signals is demonstrated. The results suggest that all‐inorganic metal halide perovskite‐based photodetectors have great application potential for optical communication.  相似文献   

14.
Optoelectronic devices based on metal halide perovskites, including solar cells and light‐emitting diodes, have attracted tremendous research attention globally in the last decade. Due to their potential to achieve high carrier mobilities, organic–inorganic hybrid perovskite materials can enable high‐performance, solution‐processed field‐effect transistors (FETs) for next‐generation, low‐cost, flexible electronic circuits and displays. However, the performance of perovskite FETs is hampered predominantly by device instabilities, whose origin remains poorly understood. Here, perovskite single‐crystal FETs based on methylammonium lead bromide are studied and device instabilities due to electrochemical reactions at the interface between the perovskite and gold source–drain top contacts are investigated. Despite forming the contacts by a gentle, soft lamination method, evidence is found that even at such “ideal” interfaces, a defective, intermixed layer is formed at the interface upon biasing of the device. Using a bottom‐contact, bottom‐gate architecture, it is shown that it is possible to minimize such a reaction through a chemical modification of the electrodes, and this enables fabrication of perovskite single‐crystal FETs with high mobility of up to ≈15 cm2 V?1 s?1 at 80 K. This work addresses one of the key challenges toward the realization of high‐performance solution‐processed perovskite FETs.  相似文献   

15.
Mixed‐halide wide‐bandgap perovskites are key components for the development of high‐efficiency tandem structured devices. However, mixed‐halide perovskites usually suffer from phase‐impurity and high defect density issues, where the causes are still unclear. By using in situ photoluminescence (PL) spectroscopy, it is found that in methylammonium (MA+)‐based mixed‐halide perovskites, MAPb(I0.6Br0.4)3, the halide composition of the spin‐coated perovskite films is preferentially dominated by the bromide ions (Br?). Additional thermal energy is required to initiate the insertion of iodide ions (I?) to achieve the stoichiometric balance. Notably, by incorporating a small amount of formamidinium ions (FA+) in the precursor solution, it can effectively facilitate the I? coordination in the perovskite framework during the spin‐coating and improve the composition homogeneity of the initial small particles. The aggregation of these homogenous small particles is found to be essential to achieve uniform and high‐crystallinity perovskite film with high Br? content. As a result, high‐quality MA0.9FA0.1Pb(I0.6Br0.4)3 perovskite film with a bandgap (Eg) of 1.81 eV is achieved, along with an encouraging power‐conversion‐efficiency of 17.1% and open‐circuit voltage (Voc) of 1.21 V. This work also demonstrates the in situ PL can provide a direct observation of the dynamic of ion coordination during the perovskite crystallization.  相似文献   

16.
Low‐dimensional Ruddlesden–Popper perovskites (RPPs) exhibit excellent stability in comparison with 3D perovskites; however, the relatively low power conversion efficiency (PCE) limits their future application. In this work, a new fluorine‐substituted phenylethlammonium (PEA) cation is developed as a spacer to fabricate quasi‐2D (4FPEA)2(MA)4Pb5I16 (n = 5) perovskite solar cells. The champion device exhibits a remarkable PCE of 17.3% with a Jsc of 19.00 mA cm?2, a Voc of 1.16 V, and a fill factor (FF) of 79%, which are among the best results for low‐dimensional RPP solar cells (n ≤ 5). The enhanced device performance can be attributed as follows: first, the strong dipole field induced by the 4‐fluoro‐phenethylammonium (4FPEA) organic spacer facilitates charge dissociation. Second, fluorinated RPP crystals preferentially grow along the vertical direction, and form a phase distribution with the increasing n number from bottom to the top surface, resulting in efficient charge transport. Third, 4FPEA‐based RPP films exhibit higher film crystallinity, enlarged grain size, and reduced trap‐state density. Lastly, the unsealed fluorinated RPP devices demonstrate superior humidity and thermal stability. Therefore, the fluorination of the long‐chain organic cations provides a feasible approach for simultaneously improving the efficiency and stability of low‐dimensional RPP solar cells.  相似文献   

17.
2D hybrid perovskites have shown great promise in the photodetection field, due to their intriguing attributes stemming from unique structural architectures. However, the great majority of detectors based on this 2D system possess a relatively low response speed (≈ms), making it extremely urgent to develop new candidates for superfast photodetection. Here, a new organic–inorganic hybrid perovskite, (PA)2(FA)Pb2I7 (EFA, where PA is n‐pentylaminium and FA is formamidine), which features the 2D Ruddlesden–Popper type perovskite framework that is composed of the corner‐sharing PbI6 octahedra is reported. Significantly, photodetectors fabricated on highly oriented thin films, which exhibit a perfect orientation parallel to 2D inorganic perovskite layers, exhibit a superfast response time up to ≈2.54 ns. To the best of the knowledge, this figure‐of‐merit catches up with that of the top‐ranking commercial materials, and sets a new record for 2D hybrid perovskite photodetectors. Moreover, extremely high photodetectivity (≈1.73 × 1014 Jones, under an incident power intensity of ≈46 µW cm?2), considerable switching ratios (>103), and low dark current (≈10 pA) are also achieved in the detector, indicating its great potential for high‐efficiency photodetection. These results shed light on the possibilities to explore new 2D candidates for assembling future high‐performance optoelectronic devices.  相似文献   

18.
Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.  相似文献   

19.
Tin‐based perovskites with narrow bandgaps and high charge‐carrier mobilities are promising candidates for the preparation of efficient lead‐free perovskite solar cells (PSCs). However, the crystalline rate of tin‐based perovskites is much faster, leading to abundant trap states and much lower open‐circuit voltage (Voc). Here, hydrogen bonding is introduced to retard the crystalline rate of the FASnI3 perovskite. By adding poly(vinyl alcohol) (PVA), the O? H…I? hydrogen bonding interactions between PVA and FASnI3 have the effects of introducing nucleation sites, slowing down the crystal growth, directing the crystal orientation, reducing the trap states, and suppressing the migration of the iodide ions. In the presence of the PVA additive, the FASnI3–PVA PSCs attain higher power conversion efficiency of 8.9% under a reverse scan with significantly improved Voc from 0.55 to 0.63 V, which is one of the highest Voc values for FASnI3‐based PSCs. More importantly, the FASnI3–PVA PSCs exhibit striking long‐term stability, with no decay in efficiency after 400 h of operation at the maximum power point. This approach, which makes use of the O? H…I? hydrogen bonding interactions between PVA and FASnI3, is generally applicable for improving the efficiency and stability of the FASnI3‐based PSCs.  相似文献   

20.
All‐inorganic cesium lead halide perovskite is suggested as a promising candidate for perovskite solar cells due to its prominent thermal stability and comparable light absorption ability. Designing textured perovskite films rather than using planar‐architectural perovskites can indeed optimize the optical and photoelectrical conversion performance of perovskite photovoltaics. Herein, for the first time, this study demonstrates a rational strategy for fabricating carbon quantum dot (CQD‐) sensitized all‐inorganic CsPbBr3 perovskite inverse opal (IO) films via a template‐assisted, spin‐coating method. CsPbBr3 IO introduces slow‐photon effect from tunable photonic band gaps, displaying novel optical response property visible to naked eyes, while CQD inlaid among the IO frameworks not only broadens the light absorption range but also improves the charge transfer process. Applied in the perovskite solar cells, compared with planar CsPbBr3, slow‐photon effect of CsPbBr3 IO greatly enhances the light utilization, while CQD effectively facilitates the electron–hole extraction and injection process, prolongs the carrier lifetime, jointly contributing to a double‐boosted power conversion efficiency (PCE) of 8.29% and an increased incident photon‐to‐electron conversion efficiency of up to 76.9%. The present strategy on CsPbBr3 IO to enhance perovskite PCE can be extended to rationally design other novel optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号