首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

The objective of this study was to investigate the in vitro and in vivo drug release performance of a rupturable multiparticulate pulsatile system, coated with aqueous polymer dispersion Aquacoat® ECD. Acetaminophen was used as a model drug, because in vivo performance can be monitored by measuring its concentration in saliva. Drug release was typical pulsatile, characterized by lag time, followed by fast drug release. Increasing the coating level of outer membrane lag time was clearly delayed. In vitro the lag time in 0.1 N HCl was longer, compared to phosphate buffer pH 7.4 because of ionisable ingredients present in the formulation (crosscarmelose sodium and sodium dodecyl sulphate). In vitro release was also longer in medium with higher ion concentration (0.9% NaCl solution compared to purified water); but independent of paddle rotation speed (50 vs.100 rpm). Macroscopically observation of the pellets during release experiment confirms that the rupturing of outer membrane was the main trigger for the onset of release. At the end of release outer membrane of all pellets was destructed and the content completely released.

However, pellets with higher coating level and correspondingly longer lag time showed decreased bioavailability of acetaminophen. This phenomenon was described previously and explained by decreased liquid flow in the lower part of intestine. This disadvantage can be considered as a limitation for drugs (like acetaminophen) with high dose and moderate solubility; however, it should not diminish performance of the investigated system in principle.  相似文献   

2.
Abstract

The aim of this study was to evaluate the monolithic osmotic tablet system (MOTS) containing a solid dispersion with the practically water-insoluble drug nifedipine in vitro and in vivo. In the drug release study in vitro, the release profiles of this system had almost zero-order kinetics. The influences of tablet formulation variables, sizes of the delivery orifice, membrane variables, and values of pH in the dissolution medium on nifedipine release from MOTS have been investigated. The results provided evidence that the tablet core played an important role in MOTS. While orifice sizes and membrane variables affected the nifedipine release rate, MOTS was independent of the dissolution medium. The appropriate orifice size was found to be in the range of 0.5–1.0 mm. The coating membrane incorporating hydrophilic polyethylene glycol (PEG) formed a porous structure. The human pharmacokinetics and relative bioavailability of MOTS containing nifedipine were compared with a commercial Adalat® osmotic tablet system containing an equivalent dose of nifedipine following an oral single dose of 30 mg given to each of 11 healthy volunteers in an open, randomized crossover study in vivo. The relative bioavailability for MOTS was 112%. There was no statistically significant difference in the pharmacokinetic parameters between two dosage forms. It is concluded that the monolithic osmotic tablet controlled release system is feasible for a long-acting preparation as a once-daily treatment.  相似文献   

3.
One appealing concept in the field of hybrid materials is related to the design of gated materials. These materials are prepared in such a way that the release of chemical or biochemical species from voids of porous supports to a solution is triggered upon the application of external stimuli. Such gated materials are mainly composed of two subunits: i) a porous inorganic scaffold in which a cargo is stored, and ii) certain molecular or supramolecular entities, grafted onto the external surface, that can control mass transport from the interior of the pores. On the basis of this concept, a large number of examples are developed in the past ten years. A comprehensive overview of gated materials used in drug delivery applications in in vivo models from 2016 to date is thus given here.  相似文献   

4.
Bioadhesive tablets were prepared by physical mixing of polymers and drug, then granulating and compressing into a tablet. The mucoadhesion was evaluated by shear stress measurement, detachment force measurement, and X-ray photography of the rabbit gastrointestinal tract. The strong interaction between the polymer and the mucous lining of the tissue helps increase contact time and permit localization. Polymers like hydroxypropyl methylcellulose K4M (HPMC K4M), hydroxypropyl methylcellulose 100 cps (HPMC 100 cps), carbopol-934, sodium carboxy methylcellulose (Na CMC), guar gum, and polyvinylpyrrolidone (PVP) were tested by shear stress measurement and detachment force measurement methods. HPMC K4M, showing maximum bioadhesion, was used in further studies. Adhesion was maximum between pH 5 and pH 6. Maximum adhesion was observed in the duodenum, followed by the jejunum and ileum. Barium sulfate (BaSO4) matrix tablets containing polymer and drug were subjected to X-ray studies in rabbits, and it was found that the tablet was mucoadhesive even after 8 hr. Enteric coating did not show any effect on mucoadhesion after passing from the stomach.  相似文献   

5.
The preparation of pH-dependent, time-based and enzyme degradable pellets was investigated for use as an oral colonic drug delivery system. It was expected that drug would be released immediately once the pellets reached the colon. The pellets were prepared using extrusion-spheronizing equipment and subsequently coated with three layers of three functional polymers by an air-suspension technique. The core consisted of 5-aminosalicylic acid (5-ASA) as a model drug, CaP as an enzyme-degradable material and microcrystalline cellulose (MCC) as an additive. As far as the three coated layers were concerned, the outer layer was coated with Eudragit L30D-55 for protection against gastrointestinal juices, the intermediate layer was coated with ethylcellulose (EC) to inhibit drug release during passage through the small intestine, and the inner film was coated with pectin for swelling and enzyme-degradation, which required a 30, 10, and 12% weight gain, respectively. Several micromeritic properties of the core pellets, including particle size distribution, particle size, degree of circularity, and friability, were evaluated to investigate the effects of the formulations of the cores and preparation conditions. Also, dissolution testing of the cores showed that the presence of calcium pectinate (CaP) markedly increased the drug release rate from the cores, as determined by scanning electron microscopy (SEM). In-vitro release studies indicated that the coated pellets completely protected the drug release in 0.1 mol/L HCl, while the drug release was delayed for 3–4 hr in pH 6.8 PBS. A synergistic effect of enzyme dependence for the coated pellets was seen following removal of the coated layer and during contact with colonic enzymes. Consequently, it was possible to achieve colon-specific drug delivery using this triple-dependence system.  相似文献   

6.
Responsive nanomaterials have emerged as promising candidates as drug delivery vehicles in order to address biomedical diseases such as cancer. In this work, polymer‐based responsive nanoparticles prepared by a supramolecular approach are loaded with doxorubicin (DOX) for the cancer therapy. The nanoparticles contain disulfide bonds within the polymer network, allowing the release of the DOX payload in a reducing environment within the endoplasm of cancer cells. In addition, the loaded drug can also be released under acidic environment. In vitro anticancer studies using redox and pH dual responsive nanoparticles show excellent performance in inducing cell death and apoptosis. Zebrafish larvae treated with DOX‐loaded nanoparticles exhibit an improved viability as compared with the cases treated with free DOX by the end of a 3 d treatment. Confocal imaging is utilized to provide the daily assessment of tumor size on zebrafish larva models treated with DOX‐loaded nanoparticles, presenting sustainable reduction of tumor. This work demonstrates the development of functional nanoparticles with dual responsive properties for both in vitro and in vivo drug delivery in the cancer therapy.  相似文献   

7.
Abstract

Statistical moment analysis has been used to establish an in vitro-in vivo correlation for five types of theophylline ethylcellulose microcapsules prepared by using various concentrations of ethylene-vinyl acetate (EVA) copolymer as a coacervation-inducing agent. The concentration of EVA copolymer was found to be played an important function in the controlled release of theophylline microcapsules. Correlations were found between the in vitro dissolution behavior, e.g., MDT 0→7, in vitro' and the rate of bioavailability, e.g., Cmax, Tmax, MDT in vivo or MRT0→2, although there was no valid correlation with the extent of bioavailability, e.g., AUC0→27. Thus, moment analysis by studying the quantitative in vitro-in vivo correlations relating to drug release was validated.  相似文献   

8.
The objective of this study is to develop the monolithic osmotic pump tablet system (MOTS) containing isosorbide-5-mononitrate (5-ISMN), and to evaluate its in vitro and in vivo properties. The influences of tablet formulation variables, size and location of the delivery orifice, membrane variables, and pH value of the dissolution medium on 5-ISMN release from MOTS have been investigated. These results demonstrated that the tablet core played an important role in MOTS, and membrane variables could affect the 5-ISMN release rate. The optimal formulation of 5-ISMN MOTS was determined by uniform design. Furthermore, the dog pharmacokinetics and relative bioavailability of the test formulation (5-ISMN MOTS) have been compared with the reference formulation (Imdur®: 60 mg/tablet, a sustained release, SR, tablet system) following an oral single dose of 60 mg given to each of six Beagle dogs. The mean drug fraction absorbed by the dog was calculated by the Wagner–Nelson technique. The results showed that drug concentration in plasma could be maintained more stable and longer after the administration of 5-ISMN MOTS compared with the matrix tablets of Imdur®, and a level A “in vitro–in vivo correlation” was observed between the percentage released in vitro and percentage absorbed in vivo. It is concluded that 5-ISMN MOTS is more feasible for a long-acting preparation than 5-ISMN SR tablet system as once-a-day treatment, and it is very simple in preparation, and can release 5-ISMN at the rate of approximately zero order for the combination of hydroxypropylmethyl cellulose as retarder and NaCl as osmogent.  相似文献   

9.
For certain patients who experience intense vertigo arising from unilateral vestibular lesions, the primary therapy is a vestibular nerve section, an intracranial surgical procedure. One alternative to this treatment is therapeutic ablation of vestibular function on the unaffected side using an ototoxic agent. We prepared a biodegradable sustained-release gel delivery system using sodium hyaluronate that can be administered into the middle ear using only a local anesthetic. The gel contains gentamycin sulfate, the ototoxic agent of choice for treatment of unilateral vestibulopathy, and it exhibits diffusion-controlled release of the drug over a period of hours. The released gentamycin could then diffuse into the inner ear through the round membrane. This represents an important advance over previous formulations, which used only gentamycin sulfate solutions, in that it should allow more careful control of the dose, it should reduce loss of the drug from the middle ear site, and it should maintain intimate contact with the round membrane. By carefully controlling the dose, it should be possible to inhibit vestibular function while minimizing hearing loss. Herein we describe the in vitro release kinetics of gentamycin sulfate from sodium hyaluronate gels and find that the system obeys Fickian behavior.  相似文献   

10.
The aim of this study was to prepare and characterize a topical formulation for sustained delivery of rizatriptan. Elastic liposomal formulation of rizatriptan was prepared and characterized for different characteristics by evaluating in vitro and in vivo parameters. The in vivo performance of optimized formulation was evaluated for antimigraine activity in mice using morphine withdrawal-induced hyperalgesia. The in vitro skin permeation study across rat skin suggested carrier-mediated transdermal permeation for different elastic liposomal formulation to range between 18.1 ± 0.6 and 42.7 ± 2.3 μg/h/cm2, which was approximately 8–19 times higher than that obtained using drug solution. The amount of drug deposited was 10-fold higher for elastic liposome (39.9 ± 3.2%) than using drug solution (3.8 ± 1%); similarly the biological activity of optimized elastic liposome formulation was found to be threefold higher than the drug solution. On the basis of the results, it can be concluded that the elastic liposomal formulation provided sustained action of rizatriptan due to depot formation in the deeper layer of skin.  相似文献   

11.
ABSTRACT

Novel pH-sensitive copolymer microspheres containing methylacrylic acid and styrene cross-linking with divinylbenzene were synthesized by free radical polymerization. The microspheres that were formed were then characterized by Fourier-Transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), size analysis, and X-ray analysis. The copolymer microspheres showed pulsatile swelling behavior whenthe pH of the media changed. The pH-sensitive microspheres were loaded with diltiazem hydrochloride (DH). The release characteristics of the free drug and the drug-loaded microspheres were studied under both simulated gastric conditions and intestinal pH conditions. The in vivo evaluation of the pulsatile preparation was subsequently carried out using beagle dogs as experimental subjects. The results demonstrated that the drug release exhibited a pulsatile character both in vitro and in vivo.  相似文献   

12.
ABSTRACT

Solid dispersions of lonidamine in PEG 4000 and PVP K 29/32 were prepared by the spray-drying method. Then, the binary systems were studied and characterized using differential scanning calorimetry, hot stage microscopy, and x-ray diffractometry. In vitro dissolution studies of the solid dispersed powders were performed to verify if any lonidamine dissolution rate or water solubility improvement occurred. In vivo tests were carried out on the solid dispersions and on the cyclodextrin inclusion complexes to verify if this lonidamine water solubility increase was really able to improve the in vivo drug plasma levels. Drug water solubility was increased by the solid dispersion formation, and the extent of increase depended on the polymer content of the powder. The greater increase of solubility corresponded to the highest content of polymer. Both the solid dispersions and the cyclodextrin complexes were able to improve the in vivo bioavailability of the lonidamine when administered per os. Particularly, the AUC of the drug plasma levels was increased from 1.5 to 1.9-fold depending on the type of carrier.  相似文献   

13.
通过介入导管将药物和基因载运到血管内病灶部位,并在血管组织中长期释放。以生物可降解聚合物PLGA为基材,采用超声乳化/溶剂挥发法分别制备包载药物和基因的纳米粒子,对纳米粒子进行了表面修饰提高血管吸收性;用载反义MCP-1基因的纳米粒子转染平滑肌细胞,对平滑肌细胞基因组DNA进行PCR扩增;用兔髂总动脉和颈总动脉血管损伤模型进行灌注实验。体外释放实验表明均具有缓慢释放作用,凝胶电泳实验证明基因的结构未遭破坏。说明纳米粒子是非常理想的血管内导向定位药物和基因控释的载体。  相似文献   

14.
Chitosan-prednisolone conjugate microspheres (Ch-SP-MS) were prepared, and Eudragit coating was applied in order to efficiently deliver the microspheres and drug to the intestinal disease sites. The Eudragit L100-coated microspheres (Ch-SP-MS/EuL100) were examined for particle characteristics and the release of drug and Ch-SP-MS in different pH media at 37°C. Ch‐SP-MS were spherical, with a mean size of 4.5 μm and prednisolone content of 3.3% (w/w). Ch-SP-MS/EuL100 were fairly spherical, with a mean size of 22. 5 μm and drug content of 0.32% (w/w). At pH 1.2, the release extent was less than 5% even at 48 h, and Eudragit coating tended to suppress the release. In contrast, at pH 6.8 and 7.4, Ch-SP-MS/EuL100 tended to show somewhat faster drug release than Ch-SP-MS. Ch-SP-MS/EuL100 displayed a release extent of 23 and 27% at pH 6.8 and 7.4, respectively. Ch-SP-MS aggregated at pH 1.2, but almost kept their initial size and shape at pH 6.8 and 7.4. Ch-SP-MS/EuL100 almost maintained their original shape and size at pH 1.2, and gradually released Ch-SP-MS at pH 6.8 and 7.4 due to dissolution of the Eudragit layer. Eudragit coating is suggested to be useful to efficiently deliver Ch-SP-MS to the intestinal disease sites.  相似文献   

15.
The aim of the investigation is to develop solid lipid nanoparticles (SLN) and nano-structured lipid carrier (NLC) as carriers for topical delivery of nitrendipine (NDP). NDP-loaded SLN and NLC were prepared by hot homogenization technique followed by sonication, and they were characterized for particle size, zeta potential, entrapment efficiency, stability, and in vitro release profiles. Also the percutaneous permeation of NDPSLN A, NDPSLN B, and NDPNLC were investigated in abdominal rat skin using modified Franz diffusion cells. The steady state flux, permeation coefficient, and lag time of NDP were estimated over 24 h and compared with that of control (NDP solution). The particle size was analyzed by photon correlation spectroscopy (PCS) using Malvern zeta sizer, which shows that the NDPSLN A, NDPSLN B, and NDPNLC were in the range of 124–300 nm during 90 days of storage at room temperature. For all the tested formulations (NDPSLN A, NDPSLN B, and NDPNLC), the entrapment efficiency was higher than 75% after 90 days of storage. The cumulative percentage of drug release at 24 h was found to be 26.21, 30.81, and 37.52 for NDPSLN A, NDPSLN B, and NDPNLC, respectively. The results obtained from in vitro release profiles also indicated the use of these lipid nanoparticles as modified release formulations for lipophilic drug over a period of 24 h. The data obtained from in vitro release from NDPSLN A, NDPSLN B, and NDPNLC were fitted to various kinetic models. High correlation was obtained in Higuchi and Weibull model. The release pattern of drug is analyzed and found to follow Weibull and Higuchi equations. The permeation profiles were obtained for all formulations: NDPSLN A, NDPSLN B, and NDPNLC. Of all the three formulations, NDPNLC provided the greatest enhancement for NDP flux (21.485 ± 2.82 μg/h/cm2), which was fourfold over control (4.881 ± 0.96 μg/h/cm2). The flux obtained with NDPSLN B (16.983 ± 2.91 μg/h/cm2) and NDPNLC (21.485 ± 2.82 μg/h/cm2) meets the required flux (16.85 μg/h/cm2).  相似文献   

16.
A system that can deliver multi-drugs at a prolonged rate is very important to the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Two controlled-release systems, which exhibited similar release profiles of metformin and glipizide, i.e., elementary osmotic pump tablets (EOP) and bilayer hydrophilic matrix tablet (BT), were designed. The effects of pH and hydrodynamic conditions on drug release from two formulations were investigated. It was found that both drug releases from EOP were not sensitive to dissolution media pH and hydrodynamics change, while the release of glipizide from BT was influenced by the stirring rate. Moreover, in vivo evaluation was performed, relative to the equivalent dose of conventional metformin tablet and glipizide tablet, by a three-crossover study in six Beagle dogs. Cumulative percent input in vivo was compared to in vitro release profiles. The linear correlations of metformin and glipizide between fraction absorbed in vivo and fraction dissolved in vitro were established for EOP—a true zero-order release formula, whereas only nonlinear correlations were obtained for BT. In conclusion, drug release from EOP was both independent of in vitro and in vivo conditions, where the best sustained release effect was achieved, whereas the in vitro dissolution test employed for BT needed to be further optimized to be biorelevant.  相似文献   

17.
毕玉水 《材料导报》2018,32(12):1973-1977
以全硅MCM-41介孔分子筛为主体,以盐酸黄连素(BH)药物分子为客体,利用天然高分子海藻酸钠(SA)和壳聚糖(CS)为包覆材料,通过振荡吸附-浸提法制备了时间控制/pH依赖型BH/MCM-41/CS-SA结肠给药系统。利用XRD、SEM、BET、FTIR等技术对其理化性质进行了表征,并采用分光光度法对其载药和体外释药性能进行了评价。结果表明,BH/MCM-41/CS-SA的载药率为23.5%,载药后未破坏MCM-41的介孔结构。体外释放结果表明,相较BH/MCM-41,BH/MCM-41/CS-SA具有显著的时滞/pH依赖敏感释药特征,具备较好的结肠靶向给药性能,还具有长效控缓释放效果。  相似文献   

18.
19.
ABSTRACT

A new drug-in-adhesive transdermal patch was developed to deliver both estradiol and levonorgestrel through the skin over a 7-day period, but at different rates. This report elucidates the in vitro and in vivo biopharmaceutical studies that were necessary during the development of this product. Three test patches had to be manufactured, all delivering estradiol at the same rate, but delivering levonorgestrel at three different rates so that a levonorgestrel dose response could be studied in the clinic. An in vitro hairless mouse skin model (HMS) using modified Franz diffusion cells was used to select the test products delivering levonorgestrel in the order of 1:2:3. HMS experiments also demonstrated that the presence of estradiol did not affect the flux of levonorgestrel. Two in vivo studies in postmenopausal women showed that at steady state (four weeks of once-weekly dosing) the three test products all delivered estradiol at comparable rates. Similarly, the levonorgestrel deliveries for the three test products were in the order expected. The target fluxes of both drugs were achieved in these three test products by varying the drug loads and patch size. That this approach was successful is evidence of the value of using the HMS penetration experiments in transdermal product development and should provide useful insights for other formulations having to develop complex systems. One of the test products is now marketed as Climara ProTM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号