首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses robust model predictive control (MPC) for time-delay systems with polytopic uncertainty. Uncertain time-varying input delay and state delays are considered, and the infinite horizon control moves are parametrised into an augmented state feedback law at each time instant. A receding horizon implementation of this state feedback law renders satisfaction of input/state constraints and closed-loop stability. For time-invariant delays and known delays, simplified results are obtained. A numerical example and a benchmark problem on continuous stirred tank reactor (CSTR) are given to illustrate the effectiveness of the proposed techniques.  相似文献   

2.
3.
4.
This paper considers the dynamic output feedback robust model predictive control (MPC) for a system with both polytopic model parametric uncertainty and bounded disturbance. For this topic, the techniques for handling the unknown true state are crucial, and the strict guarantee of the input/output/state constraints favors replacing the true state by its bound in the optimization problems. The previous utilized polyhedral bounds, constructed by virtue of the error signals which are some linear combinations of the true state, the estimated state and the output, are generalized, where a bias item is utilized. Based on this unified bounding approach, new techniques for handling the unknown true state are given for both the main and the auxiliary optimization problems. As before, the main optimization problem calculates the control law parameters conditionally, and the auxiliary optimization problem determines the time to refresh these parameters. By applying the proposed method, the augmented state of the closed‐loop system is guaranteed to converge to the neighborhood of the equilibrium point. A numerical example is given to illustrate the effectiveness of the new method.  相似文献   

5.
In this paper, the problem of sampled‐data model predictive control (MPC) is investigated for linear networked control systems with both input delay and input saturation. The delay‐induced nonlinearity is overapproximatively modeled as a polytopic inclusion. The nonlinear behavior of input saturation is expressed as a convex polytope. The resulting closed‐loop systems are represented as linear systems with polytopic and additive norm‐bounded uncertainties. The aim is to determine a robust MPC controller that asymptotically stabilizes the uncertain system at the origin with a certain level of quadratic performance. The effectiveness of the proposed algorithm is demonstrated by a numerical example.  相似文献   

6.
This paper addresses the state derivative feedback control problem for uncertain polytopic systems subject to an uncertain sampling period and network-induced delay. The distinctive contribution relies on the direct design of a robust state derivative feedback controller employing an augmented discretized model derived in terms of the state derivative feedback such that network-induced delay and uncertain sampling periods can be incorporated from the original continuous-time state-space representation into the discretized model. Two augmented models are provided to handle longer input time delays, as well as delays less or equal to the sampling period. In this work, all the uncertain parameters are modeled as a polytopic form whose resulting discrete-time model has matrices with polynomial dependence on the uncertain parameters and an additive norm-bounded term featuring the discretization residual error. Moreover, synthesis conditions are derived using a set of linear matrix inequalities (LMI) to solve the stabilization problem for this class of systems under different input time delays. Finally, numerical simulations are carried out to evaluate the effectiveness of the proposed method.  相似文献   

7.
8.
研究具有多包不确定型参数和有界噪声系统的动态输出反馈鲁棒模型预测控制(Output feedback robust model predictive control,OFRMPC)的综合方法. 前期的研究表明,估计误差集合(Estimation error set,EES)的更新是输出反馈模型预测控制综合方法研究的一个关键技术. 在本文中,通过利用S-procedure,采用新的估计误差集合更新方法.通过适当地在线更新估计误差集合,可获得下一采样时刻更紧凑的估计误差集合. 通过数值仿真例子验证了该方法的有效性.  相似文献   

9.
10.
A fundamental question about model predictive control (MPC) is its robustness to model uncertainty. In this paper, we present a robust constrained output feedback MPC algorithm that can stabilize plants with both polytopic uncertainty and norm-bound uncertainty. The design procedure involves off-line design of a robust constrained state feedback MPC law and a state estimator using linear matrix inequalities (LMIs). Since we employ an off-line approach for the controller design which gives a sequence of explicit control laws, we are able to analyze the robust stabilizability of the combined control laws and estimator, and by adjusting the design parameters, guarantee robust stability of the closed-loop system in the presence of constraints. The algorithm is illustrated with two examples.  相似文献   

11.
12.
In networked systems, intermittent failures in data transmission are usually inevitable due to the limited bandwidth of the communication channel, and an effective countermeasure is to add redundance so as to improve the reliability of the communication service. This paper is concerned with the model predictive control (MPC) problem by using static output feedback for a class of polytopic uncertain systems with redundant channels under both input and output constraints. By utilizing the min–max control approach combined with stochastic analysis, sufficient conditions are established to guarantee the feasibility of the designed MPC scheme that ensures the robust stability of the closed‐loop system. In terms of the solution to an auxiliary optimization problem, an easy‐to‐implement MPC algorithm is proposed to obtain the desired sub‐optimal control sequence as well as the upper bound of the quadratic cost function. Finally, to illustrate its effectiveness, the proposed design method is applied to control a networked direct current motor system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes a robust output feedback model predictive control (MPC) scheme for linear parameter varying (LPV) systems based on a quasi-min–max algorithm. This approach involves an off-line design of a robust state observer for LPV systems using linear matrix inequality (LMI) and an on-line robust output feedback MPC algorithm using the estimated state. The proposed MPC method for LPV systems is applicable for a variety of systems with constraints and guarantees the robust stability of the output feedback systems. A numerical example for an LPV system subject to input constraints is given to demonstrate its effectiveness.  相似文献   

14.
Aiming at the constrained polytopic uncertain system with energy‐bounded disturbance and unmeasurable states, a novel synthesis scheme to design the output feedback robust model predictive control(MPC)is put forward by using mixed H2/H design approach. The proposed scheme involves an offline design of a robust state observer using linear matrix inequalities(LMIs)and an online output feedback robust MPC algorithm using the estimated states in which the desired mixed objective robust output feedback controllers are cast into efficiently tractable LMI‐based convex optimization problems. In addition, the closed‐loop stability and the recursive feasibility of the proposed robust MPC are guaranteed through an appropriate reformulation of the estimation error bound (EEB). A numerical example subject to input constraints illustrates the effectiveness of the proposed controller.  相似文献   

15.
16.
For constrained piecewise linear (PWL) systems, the possible existing model uncertainty will bring the difficulties to the design approaches of model predictive control (MPC) based on mixed integer programming (MIP). This paper combines the robust method and hybrid method to design the MPC for PWL systems with structured uncertainty. For the proposed approach, as the system model is known at current time, a free control move is optimized to be the current control input. Meanwhile, the MPC controller uses a sequence of feedback control laws as the future control actions, where each feedback control law in the sequence corresponds to each partitions and the arbitrary switching technique is adopted to tackle all the possible switching. Furthermore, to reduce the online computational burden of MPC, the segmented design procedure is suggested by utilizing the characteristics of the proposed approach. Then, an offline design algorithm is proposed, and the reserved degree of freedom can be online used to optimize the control input with lower computational burden.  相似文献   

17.
This article addresses the problem of designing a robust output feedback model predictive control (MPC) with input constraints, which ensures a parameter-dependent quadratic stability and guaranteed cost for the case of linear polytopic systems. A new heuristic method is introduced to guarantee input constraints for the MPC. To reject disturbances and maintain the process at the optimal operating conditions or setpoints, the integrator is added to the controller design procedure. Finally, some numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

18.
The synthesis approach for dynamic output feedback robust model predictive control is considered. The notion of quadratic boundedness is utilised to characterise the stability properties of the augmented closed-loop system. A finite horizon performance cost, which corresponds to the worst case of both the polytopic uncertainty and the bounded disturbance/noise, is utilised. It is not required to specify the horizon length. A numerical example is given to illustrate the effectiveness of the proposed controller.  相似文献   

19.
饱和约束系统的鲁棒模型预测控制   总被引:2,自引:0,他引:2  
针对饱和约束系统提出了一种鲁棒模型预测控制算法,分别考虑了多面体不确定性和结构反馈不确定性.考虑无穷时域的最坏二次性能指标,通过采用带有饱和特性的反馈控制结构,将控制律的求解转化为一个在线的线性矩阵不等式优化问题.初始时刻优化问题的可行性保证了闭环控制系统的鲁棒稳定性.最后的仿真结果说明了算法的优越性.  相似文献   

20.
The implementation of model predictive control (MPC) requires to solve an optimization problem online. The computation time, often not negligible especially for nonlinear MPC (NMPC), introduces a delay in the feedback loop. Moreover, it impedes fast sampling rate setting for the controller to react to uncertainties quickly. In this paper, a dual time scale control scheme is proposed for linear/nonlinear systems with external disturbances. A pre-compensator works at fast sampling rate to suppress uncertainty, while the outer MPC controller updates the open loop input sequence at a slower rate. The computation delay is explicitly considered and compensated in the MPC design. Four robust MPC algorithms for linear/nonlinear systems in the literature are adopted and tailored for the proposed control scheme. The recursive feasibility and stability are rigorously analysed. Three simulation examples are provided to validate the proposed approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号