首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integration of three-dimensional spatial distributions into building simulations is of significant interest, and computational fluid dynamics (CFD) analysis is widely employed in building design processes. For example, based on the experience of architects and engineers, CFD analyses are often conducted under steady boundary conditions to determine the degree of attainment of indoor environments. However, CFD analyses have large calculation costs and cannot be often used for simulations with unsteady boundary conditions such as energy simulations in the building design processes. Thus, we developed a method that calculates sensitivities from heat sources to an arbitrary point in an indoor environment and integrates them into simulations with unsteady boundary conditions. In the proposed method, CFD analysis is employed under steady boundary conditions to calculate the response factors, and the resulting sensitivities are integrated into simulations under unsteady boundary conditions. In the present study, the proposed method was applied to optimize the variables of an air conditioning control system. With our method, temperature changes at a sensor over time are calculated from the time series of air supply temperature. In total, 800 calculations were conducted, and the optimal variables that allow the temperature at the sensor to reach the target value quickly were obtained. Except for the time required to calculate the response factors, the optimization in the present study took only a few seconds. If only CFD analysis was used for the optimization, the calculations would take a year. Thus, calculating the sensitivities via CFD analysis and utilizing the results in simulations is a useful approach for solving optimization problems. Moreover, the proposed method is applicable to simulations that require three-dimensional spatial distributions to enhance the accuracy of the calculation such as energy simulations.  相似文献   

2.
Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling aspects of turbulence and boundary conditions, as well as aspects related to numerical errors, with emphasis on choice of differencing scheme and computational grid. Illustrative examples are given to stress the main points related to numerical errors. Finally, recommendations are given for improving the quality of CFD calculations, as well as guidelines for the minimum information that should accompany all CFD-related publications to enable a scientific judgment of the quality of the study.  相似文献   

3.
Traditional models for heat and moisture transport in buildings consider indoor air as a well-mixed gas with uniform properties. Computational fluid dynamics (CFD) offers the possibility of taking into account the effect of air distributions on the interaction with the walls. This paper compares simulations made with a traditional well-mixed model and a CFD model in search for the limitations of the well-mixed model. The possibility of improving the accuracy of the well-mixed results by using CFD generated surface transfer coefficients is investigated. To allow for a good comparison between both models the CFD model is extended with an effective penetration depth (EPD) model for the moisture buffering in the walls, an approach which is also used in the well-mixed model. The average indoor climate and the average relative humidity in the walls predicted by the CFD–EPD model and the well-mixed model with standard surface transfer coefficients agree quite well for the studied test case. The use of CFD generated surface transfer coefficients in the well-mixed model was able to improve the well-mixed results significantly in case a stable and physically relevant surface transfer coefficient could be related to the average indoor air conditions. The studied case showed that this is not always guaranteed.  相似文献   

4.
Commercial aircraft use environmental control systems (ECSs) to control the thermal environment in cabins and thus ensure passengers’ safety, health, and comfort. This study investigated the interaction between ECS operation and cabin thermal environment. Simplified models were developed for the thermodynamic processes of the key ECS components in a commercial software program, ANSYS Simplorer. A computational fluid dynamics (CFD) program, ANSYS Fluent, was employed to simulate the thermal environment in a cabin. Through the coupling of Simplorer and Fluent, a PID control method was applied to the aircraft ECS in Simplorer to achieve dynamic control of the temperature of the supply air to the cabin, which was used as a Fluent input. The calculated supply air temperature agreed with the corresponding experimental data obtained from an MD-82 aircraft on the ground. The coupled model was then used to simulate a complete flight for the purpose of studying the interaction between ECS operation and the cabin thermal environment. The results show that the PID controller in the ECS can maintain the cabin air temperature within ±0.6 K of the set point, with an acceptable air temperature distribution. The coupled models can be used for the design and analysis of the ECS and cabin thermal environment for commercial airplanes.  相似文献   

5.
Optimal design of an indoor environment based on specific design objectives requires a determination of thermo-fluid control methods. The control methods include the air supply location, size, and parameters. This study used a computational fluid dynamics- (CFD) based adjoint method to identify the optimal air supply location, size, and parameters. Through defining the air distribution in a certain area (design domain) as a design objective in a two-dimensional, ventilated cavity, the adjoint method can identify the air supply location, size, and parameters. However, the air supply location, size, and parameters were not unique, which implied multiple solutions. By using any of the air supply location, size, and parameters identified as boundary conditions for forward CFD simulations, the computed air distribution in the design domain was the same as that used as a design objective. Thus, the computing costs did not depend on the number of design variables.  相似文献   

6.
The aim of this paper is to study the air and moisture transport through a large horizontal opening in a full-scale two-story test-hut with mixed ventilation by means of computational fluid dynamics (CFD) simulations. CFD allows extending the experimental study presented in the companion paper [1] and overcoming some limitations of experimental data. More than 80 cases were simulated for conditions similar to those tested experimentally and for additional ventilation rates and temperature difference between the two rooms. CFD simulations were performed in Airpak and the indoor zero-equation turbulence model was used. The CFD model was extensively validated with the distributions of air speed, temperature and humidity ratio measured across the two rooms, as well as with the measured interzonal mass airflows through the horizontal opening. CFD simulation results show that temperature difference between the two rooms and ventilation rate strongly influence the interzonal mass airflows through the opening when the upper room is colder than the lower room, while warm convective air currents from the baseboard heater and from the moisture source placed in the lower room cause upward mass airflows when the upper room is warmer than the lower room. Finally, empirical relationships between the upward mass airflow and the temperature difference between the two rooms are developed.  相似文献   

7.
下送上回通风方式目前得到了广泛的研究应用,其供冷运行时就是置换通风,但同样一套通风系统在一些地区的寒冷季节则有可能需要作供暖运行.为了获得下送上回通风系统在分别作供冷与供暖运行时的具体性能参数,本文应用实验测试与计算流体力学(CFD)模拟的方法研究了置于环境实验室内的某办公环境.研究中分析比较了该办公环境内的空气速度、温度以及追踪气体污染物的浓度分布.研究结果表明,下送上回通风方式作供冷运行时空气温度及污染物浓度分层现象明显,空气处于半混合状态,置换效果较好;作供暖运行时,温度及污染物浓度趋于均匀,通风系统性能接近于混合送风系统,不具备良好的抑制交叉污染的能力.  相似文献   

8.
苏华东  龚七一 《山西建筑》2010,36(12):17-19
Airpak是用于模拟室内气流组织的CFD专用软件,用于工程领域和科学研究。用该软件模拟了某室内设计方案的气流组织和热舒适性,通过调整对比分析,验证了CFD运用于改善室内热环境和提高节能效率的可行性。  相似文献   

9.
The coupling strategies for natural ventilation between building simulation (BS) and computational fluid dynamics (CFD) are discussed and coupling methodology for natural ventilation is highlighted. Two single-zone cases have been used to validate coupled simulations with full CFD simulations. The main discrepancy factors have also been analyzed. The comparison results suggest that for coupled simulations taking pressure from BS as inlet boundary conditions can provide more accurate results for indoor CFD simulation than taking velocity from BS as boundary conditions. The validation results indicate that coupled simulations can improve indoor thermal environment prediction for natural ventilation taking wind as the major force. With the aids of developed coupling program, coupled simulations between BS and CFD can effectively improve the speed and accuracy in predicting indoor thermal environment for natural ventilation studies.  相似文献   

10.
《Energy and Buildings》1998,28(2):197-203
Indoor temperature distributions and air flows lead to the variation of local thermal comfort from place to place. To have more precise predictions and better control of the thermal conditions in the working zone where the room occupant sits and works, a both detailed and fast model of the dynamic indoor temperature distributions is needed. Unfortunately, very few papers studied such models due to the complexity of fluid (air) flows. This paper discusses a zonal model which is derived from computational fluid dynamics (CFD) and the output of a CFD code. The model is validated with experimental results. In order to design better control systems, the zonal model is transformed into a state space representation form. One example is given on how the state space model can be used for temperature predictions and more precise temperature controls.  相似文献   

11.
置换通风与CFD数值模拟   总被引:2,自引:0,他引:2  
为了降低空调通风系统的能耗,提高通风效率,改善热舒适性,对于建筑在夏季工况下,可采用置换通风方式来满足室内空气品质和热舒适性的要求.通过分析置换通风的运行原理,借助计算流体力学的理论和方法,利用CFD(Fluent)软件,采用了低Re数湍流模型,模拟了夏季工况下的室内温度场和速度场.  相似文献   

12.
赵羽  袁东立  谢飞 《暖通空调》2012,42(4):21-25
为获得自然通风条件下室内的热舒适评价方法,利用Fluent软件,根据杭州市典型室外气象参数确定边界条件,模拟居住建筑室外绕流场、室内通风场和温度场的分布规律;运用基于风速补偿的热适应性评价模型分析室内热舒适状况,并将此法与PMV模型结果对比,表明前者定义舒适的阈值较小,且正向偏离较大,后者则能较好反映自然通风房间的热环境。  相似文献   

13.
This study examines both numerically and experimentally the micro-environmental conditions in public transportation buses. A Computational Fluid Dynamics (CFD) model was developed and experimentally validated. The developed CFD model was used to calculate the spatial distributions of the mean age and mean residual lifetime of air in the bus environment and evaluate the efficiency of the bus ventilation system. Additionally, the passengers’ exposures to a variety of environmental conditions were experimentally monitored in “real world” field campaigns using the Harvard University shuttle bus system. Real time continuous monitoring systems were used to assess indoor environmental quality in the buses. It was found that CO levels were very low, while the levels of particulate matter varied and were influenced by the ambient air penetrated into the bus through the operation of the doors and the ventilation system. The CO2 level was found elevated and greatly affected by occupancy conditions. The elevated CO2 level indicates that the current bus ventilation is insufficient to dilute air pollutants in the bus especially under heavy occupancy conditions. This lack of sufficient ventilation indicates an elevated risk for airborne transmitted diseases in such a popular public transportation system.  相似文献   

14.
Understanding the dispersion of contaminants inside buildings is important for improving indoor air quality (IAQ). Detailed information on the dispersion profile within a room is required to design active protection systems and to develop countermeasure strategies against potential threats from particulate based agents. A number of computational fluid dynamics (CFD) codes in the public and commercial domain can simulate contaminant dispersion inside a building. One of the critical boundary conditions required by these CFD codes is a resuspension source term model. This paper develops general source term models for particle resuspension from indoor surfaces based on dimensional analysis. First, the physical mechanisms responsible for fine particle resuspension from indoor surfaces are investigated and relevant parameters are identified. Then, three different models are developed using dimensional analysis and published resuspension data in the literature. Finally, the models are evaluated against independent experimental data that were not used to determine the model coefficients.  相似文献   

15.
Large variation in indoor air quality (IAQ) and thermal comfort can occur in partitioned office spaces due to heterogeneous air mixing. However, few published studies examined IAQ, thermal comfort, and energy performance of partitioned occupied spaces, which are commonly found in today’s buildings. The objective of this study is to evaluate indoor environmental quality and air conditioning performance of a partitioned room under two typical ventilation modes: (1) mixing ventilation and (2) displacement ventilation. For a total of six representative air-conditioning scenarios, three-dimensional computational fluid dynamics (CFD) simulations are performed to examine temperature distribution, ventilation effectiveness, energy consumption, and local thermal comfort for two partitioned spaces. Simulation results indicate that temperature distribution in a partitioned room is a strong function of ventilation strategy (mixing vs. displacement), but marginally affected by diffuser arrangements. Local age-of-air (air freshness) significantly varies with both diffuser arrangement and ventilation strategy. Regarding energy consumption, displacement ventilation can achieve an indoor set-point temperature in the partitioned spaces about two times faster than mixing ventilation. Under mixing ventilation, the time to achieve a set-point temperature was notably reduced when each partitioned space is served by its own diffuser. For the same supply airflow rate, displacement ventilation can generate local draft risk at ankle level, while mixing ventilation may result in a draft sensation in wider areas around an occupant. Overall, the results suggest that mixing ventilation system can save energy if each partitioned zone is served by its own diffuser such as a multi-split air conditioning. However, when multiple partitioned zones are served by only one diffuser, displacement ventilation is more energy-efficient and can achieve higher ventilation effectiveness than mixing ventilation.  相似文献   

16.
BIM技术近年来发展迅速,黑瞎子岛植物园在建筑设计初期就成功地引入了BIM技术。建筑风环境设计中,CFD技术应用广泛,本文着重介绍了CFD技术结合BIM技术的切入和应用,并对植物园室外风环境、室内自然通风、空调流场及热舒适性等进行了模拟计算。根据模拟的建筑风环境动态调整和优化建筑布局和朝向,优化建筑布局。同时,根据CFD的室内温湿度场计算,校核植物生长条件需求,采用局部空气调节以实现节能。  相似文献   

17.
This paper details the use of a simplified CFD model to predict the flow patterns around a computer simulated person in a displacement ventilated room. The use of CFD is a valuable tool for indoor airflow analysis and the level of complexity of the model being investigated is often critical to the accuracy of predictions. The closer the computational geometry is to the real geometry of interest, the more accurate the corresponding results are expected to be. High complexity meshes enable elaborated geometries to be resolved. The drawback is, however, their increased computational cost. The Fire Dynamics Simulator (FDS) model (Version 5) enabled to investigate the effects of geometry and computational grid simplification on the accuracy of numerical predictions. The FDS model is based on a three-dimensional Cartesian coordinate system and all solid obstructions are forced to conform to the underlying numerical grid which is a potential limitation when dealing with complex geometries such as those of a human body. Nevertheless, the developed computational model was based exclusively on a three-dimensional rectangular geometry. At the same time, in order to limit the total number of grid cells, a relatively coarser grid than those used for similar simulations was adopted in the investigation. The developed model was then assessed in terms of its capability of reproducing benchmark temperature and air velocity distributions. The extent to which numerical results depend on different simulation settings was detailed and different boundary conditions are discussed in order to provide some guidance on the parameters that resulted to affect the accuracy of the predicted results. The comparison between numerical results and measurements showed that a simplified CFD model can be used to capture the airflow characteristics of the investigated scenario with predictions showing a favourable agreement with experimental data at least in the qualitative features of the flow (the detailed investigation of the local airflow field near the occupant can not be probably conducted apart from considering the real human geometry). Significant influence of simulator geometry and of boundary conditions was found.  相似文献   

18.
Designing for wind-driven cross ventilation is challenging due to many factors. While studies have focused on the difficulty of predicting the total flow rate and measuring opening characteristics of cross ventilation, few have investigated the impacts on the distribution of indoor air. This paper provides insights on how local heat sources can generate significant buoyancy driven flow and affect indoor mixing during wind-driven cross ventilation scenarios. Measurements of air distribution were conducted by a tracer gas method for a multi-zone test building located in Austin, Texas, USA, along with cross ventilation flow at the openings. A computational fluid dynamic (CFD) model was also developed for this test building, which utilizes the measured flow properties at the openings as boundary conditions. Resulting air distribution patterns from the CFD model were then compared to the experimental data, validating the model. Further parametric analyses were also conducted to demonstrate the effect of interior heat loads in driving internal air mixing. Key findings of the investigation suggest a local heat source smaller than 35 W/m2 can increase the indoor mixing during cross ventilation from less than 1 air exchange to as high as 8 air exchanges per hour. This result also suggests a typical occupancy scenario (people and electronics) can generate enough heat loads to change the indoor air mixing and alter the effect of cross ventilation.  相似文献   

19.
《Energy and Buildings》2006,38(6):641-647
As compared with the mixing system, indoor air temperature stratification in the under-floor air distribution (UFAD) system offers an opportunity for cooling load reduction in the occupied zone. This stratification is a major feature that offers the energy saving potential, but it has not been thoroughly taken into account in most energy simulation programs. In this article, a numerical procedure, based on coupling two types of modeling, i.e., CFD (computational fluid dynamic) simulation and dynamic cooling load simulation, is proposed to predict annual energy consumption. The dimensionless temperature coefficient is first defined in the UFAD system and obtained from CFD simulation, based on the boundary conditions from a cooling load program ACCURACY. According to this coefficient, temperature stratification input to ACCURACY is then revised to calculate the updated supply and exhaust air temperatures for final annual energy prediction. To demonstrate the method, a small office room is investigated using Hong Kong weather data. With the constant air volume (CAV) supply in the UFAD system, it is found that the dimensionless temperature coefficient is almost a constant, when the locations of heat sources are fixed. As compared with the mixing system, the UFAD system derives its energy saving potential from the following three factors: an extended free cooling time, a reduced ventilation load, and increased coefficients of performance (COP) for chillers.  相似文献   

20.
This paper reports a full-scale experimental campaign and a computational fluid dynamics (CFD) study of a radiant cooling ceiling installed in a test room, under controlled conditions. This research aims to use the results obtained from the two studies to analyze the indoor thermal comfort using the predicted mean vote (PMV). During the whole experimental tests the indoor humidity was kept at a level where the condensation risk was minimized and no condensation was detected on the chilled surface of the ceiling. Detailed experimental measurements on the air temperature distribution, surface temperature and globe temperature were realized for different cases where the cooling ceiling temperature varied from 16.9 to 18.9 °C. The boundary conditions necessary for the CFD study were obtained from the experimental data measurements. The results of the simulations were first validated with the data from the experiments and then the air velocity fields were investigated. It was found that in the ankle/feet zone the air velocity could pass 0.2 m/s but for the rest of the zones it took values less than 0.1 m/s. The obtained experimental results for different chilled ceiling temperatures showed that with a cooling ceiling the vertical temperature gradient is less than 1 °C/m, which corresponds to the standard recommendations. A comparison between globe temperature and the indoor air temperature showed a maximum difference of 0.8 °C being noticed. This paper also presents the radiosity method that was used to calculate the mean radiant temperature for different positions along different axes. The method was based on the calculation of the view factors and on the surface temperatures obtained from the experiments. PMV plots showed that the thermal comfort is achieved and is uniformly distributed within the test room.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号