首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shizuo Suzuki 《Oecologia》1998,117(1-2):169-176
Leaf demography, seasonal changes in leaf quality and leaf-beetle herbivory of a herbaceous perennial plant, Sanguisorba tenuifolia, were compared between low- and high-elevation sites. Leaf nitrogen concentration was higher and leaf mass per area (LMA) was lower at the higher site than at the lower one. At the lower site, with a long growth period, plants produced many leaf cohorts and leaves emerged throughout the growing season. At the higher site, with a short growth period, however, leaf emergence was concentrated early in the growing season. The improvement of leaf quality and acceleration of leaf emergence at higher altitude are seen as adaptations to a short growing season. Results of a feeding trial suggested that leaf quality for the leaf-beetle Galerucella grisescens was higher at the higher site, but plants at the higher site showed less damage. Oviposition of G. grisescens was seasonal and unimodal at both altitudes, but the period of oviposition was shorter and its density lower at the higher site. The low temperature and short growth period at the higher site appear to reduce the activity of the leaf-beetles, resulting in a decrease in damage by herbivory, despite better leaf quality. Received: 11 December 1997 / Accepted: 24 July 1998  相似文献   

2.
Environmental conditions and plant genotype may influence insect herbivory along elevational gradients. Plant damage would decrease with elevation as temperature declines to suboptimal levels for insects. However, host plants at higher elevations may exhibit traits that either reduce or enhance leaf quality to insects, with uncertain net effects on herbivory. We examined folivory, insect abundance and leaf traits along six replicated elevational ranges in Nothofagus pumilio forests of the northern Patagonian Andes, Argentina. We also conducted a reciprocal transplant experiment between low- and high-elevation sites to test the extent of environmental and plant genetic control on insect abundance and folivory. We found that insect abundance, leaf size and specific leaf area decreased, whereas foliar phosphorous content increased, from low-, through mid- to high-elevation sites. Path analysis indicated that changes in both insect abundance and leaf traits were important in reducing folivory with increasing elevation and decreasing mean temperature. At both planting sites, plants from a low-elevation origin experienced higher damage and supported greater insect loads than plants from a high-elevation origin. The differences in leaf damage between sites were twofold larger than those between plant origins, suggesting that local environment was more important than host genotype in explaining folivory patterns. Different folivore guilds exhibited qualitatively similar responses to elevation. Our results suggest an increase in insect folivory on high-elevation N. pumilio forests under future climate warming scenarios. However, in the short-term, folivory increases might be smaller than expected from insect abundance only because at high elevations herbivores would encounter more resistant tree genotypes.  相似文献   

3.
Quaking aspen (Populus tremuloides) exhibits striking intraspecific variation in concentrations of phenolic glycosides, compounds that play important roles in mediating interactions with herbivorous insects. This research was conducted to assess the contribution of genetic variation to overall phenotypic variation in aspen chemistry and interactions with gypsy moths (Lymantria dispar) and forest tent caterpillars (Malacosoma disstria). Thirteen aspen clones were propagated from field-collected root material. Insect performance assays, measuring survival, development, growth, and food utilization indices, were conducted with second and/or fourth instars. Leaf samples were assayed for water, nitrogen, total nonstructural carbohydrates, condensed tannins, and phenolic glycosides. Results showed substantial among-clone variation in the performance of both insect species. Chemical analyses revealed significant among-clone variation in all foliar constituents and that variation in allelochemical contents differed more than variation in primary metabolites. Regression analyses indicated that phenolic glycosides were the dominant factor responsible for among-clone variation in insect performance. We also found significant genetic trade-offs between growth and defense among aspen clones. Our results suggest that genetic factors are likely responsible for much of the tremendous phenotypic variation in secondary chemistry exhibited by aspen, and that the genetic structure of aspen populations may play important roles in the evolution of interactions with phytophagous insects. Received: 14 May 1996 / Accepted: 29 January 1997  相似文献   

4.
Individual plants may vary in their suitability as hosts for insect herbivores. The adaptive deme formation hypothesis predicts that this variability will lead to the fine-scale adaptation of herbivorous insects to host individuals. We studied individual and temporal variation in the quality of leaves of the tree species ash, lime, common oak, and sycamore in the field as food for herbivores. We determined herbivore attack and leaf consumption and performance of the generalist caterpillars of Spodoptera littoralis in the laboratory. We further assessed the concentrations of carbon, nitrogen and water in the leaves.All measures of leaf tissue quality varied among and within individuals for all tree species. The level of herbivory differed among the tree individuals in lime, oak and sycamore, but not in ash. Within host individuals, differences in herbivory between the upper and lower crown layer varied in direction and magnitude depending on tree species. In feeding experiments, herbivore performance also varied among and within tree individuals. However, variation in palatability was not consistently related to the leaf traits measured or to herbivory levels in the field. The ranking of individuals with respect to the quality of leaf tissue for herbivorous insects varied between years in lime and oak. Thus, trees of both species might present moving targets for herbivores which prevents fine-scale adaptations. In contrast, among individuals of ash and sycamore the pattern of insect performance remained constant over 2 years. These species may be more suitable hosts for the formation of adapted demes in herbivores.  相似文献   

5.
We examined the effects of climate and allocation patterns on stem respiration in ponderosa pine (Pinus ponderosa) growing on identical substrate in the cool, moist Sierra Nevada mountains and the warm, dry, Great Basin Desert. These environments are representative of current climatic conditions and those predicted to accompany a doubling of atmospheric CO2, respectively, throughout the range of many western north American conifers. A previous study found that trees growing in the desert allocate proportionally more biomass to sapwood and less to leaf area than montane trees. We tested the hypothesis that respiration rates of sapwood are lower in desert trees than in montane trees due to reduced stem maintenance respiration (physiological acclimation) or reduced construction cost of stem tissue (structural acclimation). Maintenance respiration per unit sapwood volume at 15°C did not differ between populations (desert: 6.39 ± 1.14 SE μmol m−3 s−1, montane: 6.54 ± 1.13 SE μmol m−3 s−1, P = 0.71) and declined with increasing stem diameter (P = 0.001). The temperature coefficient of respiration (Q 10) varied seasonally within both environments (P = 0.05). Construction cost of stem sapwood was the same in both environments (desert: 1.46 ± 0.009 SE g glucose g−1 sapwood, montane: 1.48 ± 0.009 SE glucose g−1 sapwood, P = 0.14). Annual construction respiration calculated from construction cost, percent carbon and relative growth rate was greater in montane populations due to higher growth rates. These data provide no evidence of respiratory acclimation by desert trees. Estimated yearly stem maintenance respiration was greater in large desert trees than in large montane trees because of higher temperatures in the desert and because of increased allocation of biomass to sapwood. By analogy, these data suggest that under predicted increases in temperature and aridity, potential increases in aboveground carbon gain due to enhanced photosynthetic rates may be partially offset by increases in maintenance respiration in large trees growing in CO2-enriched atmospheres. Received: 4 November 1996 / Accepted: 23 January 1997  相似文献   

6.
John L. Maron 《Oecologia》1997,110(2):284-290
Seedlings suffer high mortality in most plant populations, with both competition and herbivory proposed as being important mechanisms causing seedling death. The relative strength of these factors, however, is often unknown. Here I ask how interspecific competition for light and insect herbivory jointly affect seedling survival of bush lupine (Lupinus arboreus), a native shrub common to coastal California. Bush lupine seedlings germinate in grasslands during winter, and throughout spring potentially compete for light with surrounding fast-growing annual grasses. By early summer, after grasses have died, seedlings can be defoliated by a locally abundant caterpillar, the western tussock moth (Orgyia vetusta). I examined the relative importance of competition and insect herbivory on seedling survival in two separate experiments. First, I compared seedling mortality in plots either exposed to or protected from tussock moth larvae. Plants were protected from herbivory by the judicious use of insecticide; control plants were sprayed with water. Tussock moth herbivory resulted in significantly greater (31%) seedling mortality. To determine the effects of interspecific competition for light on seedling survival, I manipulated the density of grass surrounding lupine seedlings. I removed all vegetation surrounding some individuals, and left intact vegetation surrounding others. Reducing competition resulted in a 32% increase in seedling survival from February to June, as well as changes in seedling growth. To determine whether there are interactive effects of competition and herbivory on seedling survival, I enclosed tussock moth larvae on half of all surviving seedlings within each of the two prior competition treatments, comparing growth and survival of defoliated and undefoliated seedlings. Defoliation in June led to an additional 50% mortality for individuals that had grown with competitors through spring, and a 53% additional mortality for seedlings that grew without competitors through spring. Thus, although competition and herbivory both caused substantial seedling mortality, there was no statistical interaction between these factors. Competition-free plants were not less vulnerable to herbivory than plants that previously grew with competitors. Taken together, these experiments indicate that competition and herbivory are both important sources of mortality for bush lupine seedlings. Received: 4 April 1996 / Accepted: 5 November 1996  相似文献   

7.
Growth, herbivory and disease in relation to gender in Salix viminalis L.   总被引:1,自引:0,他引:1  
Inger Åhman 《Oecologia》1997,111(1):61-68
Many species of dioecious plants show sex-related differences in growth rate and rates of attack by various herbivores and diseases. The common pattern is for males to grow faster than females and to be less well defended against herbivores. In willows (Salix spp.), the predominance of female-biased sex ratios has been ascribed in part to differential feeding by herbivores. In this study of Salix viminalis, seven families grown on agricultural land showed no gender-related variation in shoot biomass or rates of herbivory by insects (lepidopterans and cecidomyiids). However, Melampsora rust disease was found to be more severe on females than on males when the plants were in a non-reproductive stage. After flowering and seed-set females tended to be more affected in some families but less affected in others. Although, on average, there was a female bias in the sex ratio of S. viminalis, sex ratios differed significantly between families. These ratios were not related to any of the recorded biotic agents, but rather to relationships between families. These results are interpreted in terms of resource allocation between reproduction, growth and defence, and causes for divergence from the expected patterns are discussed. The results may have implications for S. viminalis breeding strategies where the aim is to produce biofuel. For instance, these findings suggest that gender can be ignored when selecting for a high growth rate and resistance to Melampsora and certain insect pests. Received: 2 November 1996 / Accepted: 8 February 1997  相似文献   

8.
Fluctuating asymmetry (FA) is used to describe developmental instability in bilateral structures. In trees, high FA of leaves has been assumed to indicate the level of environmental or genetic stress, and for herbivores leaves from such trees have been shown to be in some cases (though not invariably) of higher quality compared to trees with symmetrical leaves. We demonstrated that FA of birch leaves correlated positively with growth rate of leaves, and with the amount of leaf biomass consumed by larvae of the geometrid Epirrita autumnata. Since asymmetry per se cannot define leaf quality for a herbivore, we determined the biochemical compounds which covary with the degree of foliage FA, in order to elucidate relationships between leaf FA, chemistry and herbivory. High foliar FA was characteristic of birches with high initial concentrations, and rapid seasonal decline in the concentrations of gallic acid and hydrolysable tannins, and with rapid seasonal changes in the concentrations of flavonoid-glycosides and sugars. In contrast, leaf FA was not related to concentrations of proanthocyanidins, protein-bound amino acids or soluble phenylalanine, the precursor of proanthocyanidins and proteins with aromatic amino acids. The positive correlation between leaf FA and consumption by E. autumnata was presumably related to the previously demonstrated compensatory consumption of E. autumnata to high concentrations of foliar gallotannins. Furthermore, sugars are well-known feeding stimulants. We propose that the variable results in studies correlating leaf FA and herbivory may stem from variable chemical associations of FA in different plants and of species-specific effects of compounds on insects. Received: 15 July 1999 / Accepted: 24 September 1999  相似文献   

9.
The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth‐limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992–2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992–2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered.  相似文献   

10.
We tested the hypothesis that elevated CO2 would stimulate proportionally higher photosynthesis in the lower crown of Populus trees due to less N retranslocation, compared to tree crowns in ambient CO2. Such a response could increase belowground C allocation, particularly in trees with an indeterminate growth pattern such as Populus tremuloides. Rooted cuttings of P. tremuloides were grown in ambient and twice ambient (elevated) CO2 and in low and high soil N availability (89 ± 7 and 333 ± 16 ng N g−1 day−1 net mineralization, respectively) for 95 days using open-top chambers and open-bottom root boxes. Elevated CO2 resulted in significantly higher maximum leaf photosynthesis (A max) at both soil N levels. A max was higher at high N than at low N soil in elevated, but not ambient CO2. Photosynthetic N use efficiency was higher at elevated than ambient CO2 in both soil types. Elevated CO2 resulted in proportionally higher whole leaf A in the lower three-quarters to one-half of the crown for both soil types. At elevated CO2 and high N availability, lower crown leaves had significantly lower ratios of carboxylation capacity to electron transport capacity (V cmax/J max) than at ambient CO2 and/or low N availability. From the top to the bottom of the tree crowns, V cmax/J max increased in ambient CO2, but it decreased in elevated CO2 indicating a greater relative investment of N into light harvesting for the lower crown. Only the mid-crown leaves at both N levels exhibited photosynthetic down regulation to elevated CO2. Stem biomass segments (consisting of three nodes and internodes) were compared to the total A leaf for each segment. This analysis indicated that increased A leaf at elevated CO2 did not result in a proportional increase in local stem segment mass, suggesting that C allocation to sinks other than the local stem segment increased disproportionally. Since C allocated to roots in young Populus trees is primarily assimilated by leaves in the lower crown, the results of this study suggest a mechanism by which C allocation to roots in young trees may increase in elevated CO2. Received: 12 August 1996 / Accepted: 12 November 1996  相似文献   

11.
This study examined the independent and interactive effects of elevated atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) on the foliar and litter chemistry of two deciduous tree species and the frass chemistry of four lepidopteran folivores. Trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) were grown under elevated levels of CO2 and/or O3 at the Aspen FACE research site in northern WI, USA. We measured the effects of CO2 and O3 on nitrogen, carbon to nitrogen (C:N), and condensed tannin levels in aspen and birch leaves and senescent litter and also in the frass of folivores fed aspen or birch green leaves. Overall, the effects of elevated CO2 on foliar chemistry were less pronounced than those of elevated O3, and aspen responded more strongly than birch. While the effects of elevated CO2 and O3 on foliar chemistry were generally reflected in frass chemistry, the magnitude of the response varied among insect species. Insect frass had higher nitrogen and condensed tannin levels and lower C:N ratios than did litter, although the magnitude of this response varied among fumigation treatments and insect species. Our findings demonstrate that the quality of insect-mediated organic deposition can be indirectly affected by atmospheric change, through altered foliar quality. Our findings also suggest that the quality of frass deposited on the forest floor via herbivory will be strongly affected by herbivore community composition.  相似文献   

12.
Atmospheric nitrogen deposition may indirectly affect ecosystems through deposition-induced changes in the rates of insect herbivory. Plant nitrogen (N) status can affect the consumption rates and population dynamics of herbivorous insects, but the extent to which N deposition-induced changes in herbivory might lead to changes in ecosystem-level carbon (C) and N dynamics is unknown. We created three insect herbivory functions based on empirical responses of insect consumption and population dynamics to changes in foliar N and implemented them into the CENTURY model. We modeled the responses of C and N storage patterns and flux rates to N deposition and insect herbivory in an herbaceous system. Results from the model indicate that N deposition caused a strong increase in plant production, decreased plant C : N ratios, increased soil organic C (SOC), and enhanced rates of N mineralization. In contrast, herbivory decreased both vegetative and SOC storage and depressed N mineralization rates. The results suggest that herbivory plays a particularly important role in affecting ecosystem processes by regulating the threshold value of N deposition at which ecosystem C storage saturates; C storage saturated at lower rates of N deposition with increasing intensity of herbivory. Differences in the results among the modeled insect herbivory functions suggests that distinct physiological and population response of insect herbivores can have a large impact on ecosystem processes. Including the effects of herbivory in ecosystem studies, particularly in systems where rates of herbivory are high and linked to plant C : N, will be important in generating accurate predictions of the effects of atmospheric N deposition on ecosystem C and N dynamics.  相似文献   

13.
Abstract The influence of soil moisture content on leaf dynamics and insect herbivory was examined between September 1991 and March 1992 in a river red gum (Eucalyptus camaldulensis) forest in southern central New South Wales. Long-term observations of leaves were made in trees standing either within intermittently flooded waterways or at an average of 37. 5m from the edge of the waterways. The mean soil moisture content was significantly (P≤0.05) greater in the waterways than in the non-flooded areas. Trees in the higher soil moisture regime produced significantly larger basal area increments and increased canopy leaf area. This increase in canopy leaf area was achieved, in part, through a significant increase in leaf longevity and mean leaf size. Although a greater number of leaves was initiated and abscissed per shoot from the non-flooded trees, more leaves were collected from litter traps beneath the denser canopies of the flooded trees. Consumption of foliage by insects on the trees subjected to flooding compared to the non-flooded trees was not significantly different. However, the relative impact of insect herbivory was significantly greater on the non-flooded trees. Leaf chewing was the most common form of damage by insects, particularly Chryso-melidae and Curculionidae. No species was present in outbreak during this study. Leaf survival decreased as the per cent area eaten per leaf increased. In addition, irrespective of the level of herbivory, leaf abscission tended to be higher in E. camaldulensis under moisture deficit. The influence of soil moisture content on the balance between river red gum growth and insect herbivory is discussed.  相似文献   

14.
Individual quaking aspen trees vary greatly in foliar chemistry and susceptibility to defoliation by gypsy moths and forest tent caterpillars. To relate performance of these insects to differences in foliar chemistry, we reared larvac from egg hatch to pupation on leaves from different aspen trees and analyzed leaf samples for water, nitrogen, total nonstructural carbohydrates, phenolic glycosides, and condensed tannins. Larval performance varied markedly among trees. Pupal weights of both species were strongly and inversely related to phenolic glycoside concentrations. In addition, gypsy moth performance was positively related to condensed tannin concentrations, whereas forest tent caterpillar pupal weights were positively associated with leaf nitrogen concentrations. A subsequent study with larvae fed aspen leaves supplemented with the phenolic glycoside tremulacin confirmed that the compound reduces larval performance. Larvae exhibited increased stadium durations and decreased relative growth rates and food conversion efficiencies as dietary levels of tremulacin increased. Differences in performance were more pronounced for gypsy moths than for forest tent caterpillars. These results suggest that intraspecific variation in defensive chemistry may strongly mediate interactions between aspen, gypsy moths and forest tent caterpillars in the Great Lakes region, and may account for differential defoliation of aspen by these two insect species.  相似文献   

15.
Deer can have severe effects on plant communities, which in turn can affect insect communities. We studied the effects of Key deer herbivory on the incidence of insect herbivores that occur within deer habitats in the lower Florida Keys, within the National Key Deer Refuge (NKDR). We analyzed plant chemistry (tannins, nitrogen) and surveyed for the occurrence of insects (above the browse tier) among plant species that were either deer-preferred or less-preferred. Results indicated higher levels of foliar tannins on islands with fewer Key deer and larger amounts of foliar nitrogen on islands with a high density of Key deer. Consequently, leaf miners were significantly more abundant on islands with high deer density, irrespective of deer-preference of plant species. On islands with a high deer density, incidence of leaves damaged by chewing insects was lower on preferred plant species but greater on less-preferred species than on islands with fewer deer. No apparent patterns were evident in the distribution of leaf gallers among plant species or islands with different deer density. Our results imply that plant nutrition levels—either preexisting or indirectly affected by deer deposition—are more important than plant defenses in determining the distribution of insect herbivores in the NKDR. Although high densities of the endangered Key deer have negative effects on some plant species in the NKDR, it seems Key deer might have an indirect positive influence on insect incidence primarily above the browse tier. Further research is warranted to enable fuller understanding of the interactions between Key deer and the insect community.  相似文献   

16.
Chacón P  Armesto JJ 《Oecologia》2006,146(4):555-565
Carbon-based secondary compounds (CBSCs), such as phenols or tannins, have been considered as one of the most important and general chemical barriers of woody plants against a diverse array of herbivores. Herbivory has been described as a critical factor affecting the growth and survival of newly established tree seedlings or juveniles then, the presence of secondary metabolites as defences against herbivores should be a primary strategy to reduce foliar damage. We examined whether light-induced changes in leaf phenolic chemistry affected insect herbivory on seedlings of two rainforest tree species, Drimys winteri (Winteraceae) and Gevuina avellana (Proteaceae). Seedlings of both species were planted under closed canopy and in a canopy gap within a large remnant forest patch. Half of the seedlings in each habitat were disinfected with a wide-spectrum systemic insecticide and the other half were used as controls. Seedling growth, survival, and foliar damage (estimated by an herbivory index) due to insect herbivores were monitored over a period of 16 months (December 2001–April 2003). The total leaf content of phenols and condensed tannins were assessed in seedlings from both habitats. As expected, access to light induced a greater production of CBSCs in seedlings of both tree species, but these compounds did not seem to play a significant defensive role, as seedlings grown in gaps suffered greater leaf damage than those planted in forest interior. In addition, in both habitats, seedlings without insecticide treatment suffered a greater foliar damage than those with insecticide, especially 16 months after the beginning of the experiment. Canopy openness and herbivory had positive and negative effects, respectively, on seedling growth and survival in both tree species. In conclusion, despite the higher levels of defence in tree-fall gap, the higher densities of herbivore override this and lead to higher damage levels.  相似文献   

17.
The increased atmospheric deposition of nitrogen (N) may indirectly affect herbivorous insects by deposition-induced changes in host quantity and quality. To avoid the “lamp effect” that can occur in small-scale N fertilizations, large-scale N fertilization (ca. 9 ha, 100 kg N ha?1 year?1) experiments were performed in a deciduous, broad-leaved, cool temperate forest. The initial responses of mature oak canopy trees (Quercus crispula) and their herbivorous insects to N fertilization were evaluated by measuring the growth and leaf qualities of the trees. The feeding guilds and community structures of the herbivorous insects at control and fertilized sites before (2012) and after (2013–2014) N fertilization were then determined. In 2014, N fertilization enhanced plant growth. In 2013 but not 2014, N fertilization increased N content and decreased the carbon/nitrogen (C/N) ratio in leaves. Despite these changes in plant traits in 2013, N fertilization had no effect on either feeding guilds (chewing herbivory, galler density, and miner density) or community structures (species richness, diversity index, and relative abundance) of herbivorous insects in the same year. However, in 2014, the diversity index decreased significantly, whereas species richness and abundance were unchanged. This suggests that species-specific responses to changes in leaf qualities following N fertilization, in the form of altered insect fecundity, impact the diversity index of herbivorous insects, albeit with a 1-year lag time. Thus, our large-scale N fertilization experiment show the time-delayed bottom-up effects of N fertilization on insect community structure.  相似文献   

18.
Giffard B  Corcket E  Barbaro L  Jactel H 《Oecologia》2012,168(2):415-424
According to the associational resistance hypothesis, neighbouring plants are expected to influence both the insect herbivore communities and their natural enemies. However, this has rarely been tested for the effects of canopy trees on herbivory of seedlings. One possible mechanism responsible for associational resistance is the indirect impact of natural enemies on insect herbivory, such as insectivorous birds. But it remains unclear to what extent such trophic cascades are influenced by the composition of plant associations (i.e. identity of ‘associated’ plants). Here, we compared the effect of bird exclusion on insect leaf damage for seedlings of three broadleaved tree species in three different forest habitats. Exclusion of insectivorous birds affected insect herbivory in a species-specific manner: leaf damage increased on Betula pendula seedlings whereas bird exclusion had no effect for two oaks (Quercus robur and Q. ilex). Forest habitat influenced both the extent of insect herbivory and the effect of bird exclusion. Broadleaved seedlings had lower overall leaf damage within pine plantations than within broadleaved stands, consistent with the resource concentration hypothesis. The indirect effect of bird exclusion on leaf damage was only significant in pine plantations, but not in exotic and native broadleaved woodlands. Our results support the enemies hypothesis, which predicts that the effects of insectivorous birds on insect herbivory on seedlings are greater beneath non-congeneric canopy trees. Although bird species richness and abundance were greater in broadleaved woodlands, birds were unable to regulate insect herbivory on seedlings in forests of more closely related tree species.  相似文献   

19.
Foliar dietary quality, and the damage that insects caused to the foliage of dieback-affected and healthy Eucalyptus blakelyi trees, were monitored for 3 years, on pastoral properties in the Australian Capital Territory. Compared with healthy trees, the foliage of dieback trees was more heavily grazed by insects, and its dietary quality was generally superior. Some of the differences in dietary quality were related to the average age of the foliage of healthy and dieback trees. But when statistical models were used to equalize the effects of differences in leaf ages, leaves on dieback trees nonetheless tended to have lower specific weights, and were sometimes rounder and contained more nitrogen. Regression analyses of herbivory against each of the dietary quality variables showed that the only significant relationship that was consistent for both of the years monitored was for foliar nitrogen and herbivory for both dieback and healthy trees. In the first year, regressions between herbivory and specific leaf weight, shape, or sugar content were also significant, but only amongst the dieback trees. This may indicate that these relationships were a response to, rather than a primary cause of, the repeated high defoliation of the dieback trees. Multiple regression equations incorporating annual means of several quality variables explained a high proportion of the variance in annual herbivory, but were grossly different between years.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号